Finite Element Modelling of Axially Loaded Mild Steel Hollow Spiral Welded Steel Tube Short Columns

Yasoja Gunawardena, Farhad Aslani

Research output: Chapter in Book/Conference paperConference paperpeer-review

1 Citation (Scopus)

Abstract

Even though spiral welded tubes (SWTs) offer numerous advantages compared to their alternatives, scarce experimental or numerical research has been conducted into the ultimate strength behavior of hollow SWTs in axial compression. This paper presents a parametric study that was carried out using non-linear finite element modeling (FEM) which investigated the behavior of hollow SWT short columns under concentric axial compression. Tubes with diameter (D) to thickness (t) ratios in the range 34-223 and steel strengths (h) of 250-650 MPa were considered in the study which focused on the capacity, failure mode and load-displacement behavior of the SWTs. The spiral-weld seam shape was modeled explicitly in the analysis which also considered idealized geometrical imperfection shapes based on the first Eigenmodes. Good agreement was observed between actual and predicted failure modes while the ductility of the SWTs was observed to decrease with increasing Dlt and fy. It was observed that orientating the FE mesh taking into account the spiral seam is critical for obtaining predicted behaviors comparable with those obtained experimentally.
Original languageEnglish
Title of host publicationProceedings of the Ninth International Conference on Advances in Steel Structures
EditorsSiu Lai Chan, Tak-Ming Chan, Songye Zhu
Place of PublicationHong Kong
PublisherHong Kong Institution of Steel Construction
Pages1559-1570
ISBN (Electronic)9889914093, 9789889914097
DOIs
Publication statusPublished - Dec 2018
Event9th International Conference on Advances in Steel Structures, ICASS 2018 - Hong Kong, China
Duration: 5 Dec 20187 Dec 2018

Publication series

NameProceedings of the 9th International Conference on Advances in Steel Structures, ICASS 2018

Conference

Conference9th International Conference on Advances in Steel Structures, ICASS 2018
Abbreviated titleICASS 2018
Country/TerritoryChina
CityHong Kong
Period5/12/187/12/18

Fingerprint

Dive into the research topics of 'Finite Element Modelling of Axially Loaded Mild Steel Hollow Spiral Welded Steel Tube Short Columns'. Together they form a unique fingerprint.

Cite this