Abstract
The clinical interpretation of breast MRI remains largely subjective, and the reported findings qualitative. Although the sensitivity of the method for detecting breast cancer is high, its specificity is poor. Computerised interpretation offers the possibility of improving specificity through objective quantitative measurement. This paper reviews the plethora of such features that have been proposed and presents a preliminary study of the most discriminatory features for dynamic contrast-enhanced MRI of the breast. In particular the results of a feature/classifier selection experiment are presented based on 20 lesions (10 malignant and 10 benign) from 20 routine clinical breast MRI examinations. Each lesion was segmented manually by a clinical radiographer and its diagnostic status confirmed by cytopathology or histopathology. The results show that textural and kinetic, rather than morphometric, features are the most important for lesion classification. They also show that the SVM classifier with sigmoid kernel performs better than other well-known classifiers: Fisher's linear discriminant function, Bayes linear classifier, logistic regression, and SVM with other kernels (distance, exponential, and radial).
Original language | English |
---|---|
Title of host publication | DICTA 2009 - Digital Image Computing |
Subtitle of host publication | Techniques and Applications |
Pages | 132-139 |
Number of pages | 8 |
DOIs | |
Publication status | Published - 1 Dec 2009 |
Externally published | Yes |
Event | Digital Image Computing: Techniques and Applications, DICTA 2009 - Melbourne, VIC, Australia Duration: 1 Dec 2009 → 3 Dec 2009 |
Conference
Conference | Digital Image Computing: Techniques and Applications, DICTA 2009 |
---|---|
Country/Territory | Australia |
City | Melbourne, VIC |
Period | 1/12/09 → 3/12/09 |