Fattening and nonfattening phenomena for planar nonlocal curvature flows

Annalisa Cesaroni, Serena Dipierro, Matteo Novaga, Enrico Valdinoci

Research output: Contribution to journalArticle

1 Citation (Scopus)

Abstract

We discuss fattening phenomenon for the evolution of sets according to their nonlocal curvature. More precisely, we consider a class of generalized curvatures which correspond to the first variation of suitable nonlocal perimeter functionals, defined in terms of an interaction kernel K, which is symmetric, nonnegative, possibly singular at the origin, and satisfies appropriate integrability conditions. We prove a general result about uniqueness of the geometric evolutions starting from regular sets with positive K-curvature in Rn and we discuss the fattening phenomenon in R2 for the evolution starting from the cross, showing that this phenomenon is very sensitive to the strength of the interactions. As a matter of fact, we show that the fattening of the cross occurs for kernels with sufficiently large mass near the origin, while for kernels that are sufficiently weak near the origin such a fattening phenomenon does not occur. We also provide some further results in the case of the fractional mean curvature flow, showing that strictly starshaped sets in Rn have a unique geometric evolution. Moreover, we exhibit two illustrative examples in R2 of closed nonregular curves, the first with a Lipschitz-type singularity and the second with a cusp-type singularity, given by two tangent circles of equal radius, whose evolution develops fattening in the first case, and is uniquely defined in the second, thus remarking the high sensitivity of the fattening phenomenon in terms of the regularity of the initial datum. The latter example is in striking contrast to the classical case of the (local) curvature flow, where two tangent circles always develop fattening. As a byproduct of our analysis, we provide also a simple proof of the fact that the cross in R2 is not a K-minimal set for the nonlocal perimeter functional associated to K.

Original languageEnglish
JournalMathematische Annalen
DOIs
Publication statusE-pub ahead of print - 11 Dec 2018

Fingerprint

Curvature Flow
Curvature
Perimeter
kernel
Tangent line
Circle
Star-shaped Set
Singularity
First Variation
Regular Sets
Mean Curvature Flow
Closed curve
Minimal Set
Cusp
Interaction
Integrability
Lipschitz
Fractional
Strictly
Uniqueness

Cite this

@article{ac758d299ac4478b8c4151bfa23a7d7d,
title = "Fattening and nonfattening phenomena for planar nonlocal curvature flows",
abstract = "We discuss fattening phenomenon for the evolution of sets according to their nonlocal curvature. More precisely, we consider a class of generalized curvatures which correspond to the first variation of suitable nonlocal perimeter functionals, defined in terms of an interaction kernel K, which is symmetric, nonnegative, possibly singular at the origin, and satisfies appropriate integrability conditions. We prove a general result about uniqueness of the geometric evolutions starting from regular sets with positive K-curvature in Rn and we discuss the fattening phenomenon in R2 for the evolution starting from the cross, showing that this phenomenon is very sensitive to the strength of the interactions. As a matter of fact, we show that the fattening of the cross occurs for kernels with sufficiently large mass near the origin, while for kernels that are sufficiently weak near the origin such a fattening phenomenon does not occur. We also provide some further results in the case of the fractional mean curvature flow, showing that strictly starshaped sets in Rn have a unique geometric evolution. Moreover, we exhibit two illustrative examples in R2 of closed nonregular curves, the first with a Lipschitz-type singularity and the second with a cusp-type singularity, given by two tangent circles of equal radius, whose evolution develops fattening in the first case, and is uniquely defined in the second, thus remarking the high sensitivity of the fattening phenomenon in terms of the regularity of the initial datum. The latter example is in striking contrast to the classical case of the (local) curvature flow, where two tangent circles always develop fattening. As a byproduct of our analysis, we provide also a simple proof of the fact that the cross in R2 is not a K-minimal set for the nonlocal perimeter functional associated to K.",
author = "Annalisa Cesaroni and Serena Dipierro and Matteo Novaga and Enrico Valdinoci",
year = "2018",
month = "12",
day = "11",
doi = "10.1007/s00208-018-1793-6",
language = "English",
journal = "Mathematische Annalen",
issn = "0025-5831",
publisher = "Springer-Verlag London Ltd.",

}

Fattening and nonfattening phenomena for planar nonlocal curvature flows. / Cesaroni, Annalisa; Dipierro, Serena; Novaga, Matteo; Valdinoci, Enrico.

In: Mathematische Annalen, 11.12.2018.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Fattening and nonfattening phenomena for planar nonlocal curvature flows

AU - Cesaroni, Annalisa

AU - Dipierro, Serena

AU - Novaga, Matteo

AU - Valdinoci, Enrico

PY - 2018/12/11

Y1 - 2018/12/11

N2 - We discuss fattening phenomenon for the evolution of sets according to their nonlocal curvature. More precisely, we consider a class of generalized curvatures which correspond to the first variation of suitable nonlocal perimeter functionals, defined in terms of an interaction kernel K, which is symmetric, nonnegative, possibly singular at the origin, and satisfies appropriate integrability conditions. We prove a general result about uniqueness of the geometric evolutions starting from regular sets with positive K-curvature in Rn and we discuss the fattening phenomenon in R2 for the evolution starting from the cross, showing that this phenomenon is very sensitive to the strength of the interactions. As a matter of fact, we show that the fattening of the cross occurs for kernels with sufficiently large mass near the origin, while for kernels that are sufficiently weak near the origin such a fattening phenomenon does not occur. We also provide some further results in the case of the fractional mean curvature flow, showing that strictly starshaped sets in Rn have a unique geometric evolution. Moreover, we exhibit two illustrative examples in R2 of closed nonregular curves, the first with a Lipschitz-type singularity and the second with a cusp-type singularity, given by two tangent circles of equal radius, whose evolution develops fattening in the first case, and is uniquely defined in the second, thus remarking the high sensitivity of the fattening phenomenon in terms of the regularity of the initial datum. The latter example is in striking contrast to the classical case of the (local) curvature flow, where two tangent circles always develop fattening. As a byproduct of our analysis, we provide also a simple proof of the fact that the cross in R2 is not a K-minimal set for the nonlocal perimeter functional associated to K.

AB - We discuss fattening phenomenon for the evolution of sets according to their nonlocal curvature. More precisely, we consider a class of generalized curvatures which correspond to the first variation of suitable nonlocal perimeter functionals, defined in terms of an interaction kernel K, which is symmetric, nonnegative, possibly singular at the origin, and satisfies appropriate integrability conditions. We prove a general result about uniqueness of the geometric evolutions starting from regular sets with positive K-curvature in Rn and we discuss the fattening phenomenon in R2 for the evolution starting from the cross, showing that this phenomenon is very sensitive to the strength of the interactions. As a matter of fact, we show that the fattening of the cross occurs for kernels with sufficiently large mass near the origin, while for kernels that are sufficiently weak near the origin such a fattening phenomenon does not occur. We also provide some further results in the case of the fractional mean curvature flow, showing that strictly starshaped sets in Rn have a unique geometric evolution. Moreover, we exhibit two illustrative examples in R2 of closed nonregular curves, the first with a Lipschitz-type singularity and the second with a cusp-type singularity, given by two tangent circles of equal radius, whose evolution develops fattening in the first case, and is uniquely defined in the second, thus remarking the high sensitivity of the fattening phenomenon in terms of the regularity of the initial datum. The latter example is in striking contrast to the classical case of the (local) curvature flow, where two tangent circles always develop fattening. As a byproduct of our analysis, we provide also a simple proof of the fact that the cross in R2 is not a K-minimal set for the nonlocal perimeter functional associated to K.

UR - http://www.scopus.com/inward/record.url?scp=85058217093&partnerID=8YFLogxK

U2 - 10.1007/s00208-018-1793-6

DO - 10.1007/s00208-018-1793-6

M3 - Article

JO - Mathematische Annalen

JF - Mathematische Annalen

SN - 0025-5831

ER -