Facilitation of neuronal activity in somatosensory and posterior parietal cortex during prehension

E.P. Gardner, J.Y. Ro, D. Debowy, Soumya Ghosh

Research output: Contribution to journalArticle

48 Citations (Scopus)

Abstract

In order to study prehension in a reproducible manner, we trained monkeys to perform a task in which rectangular, spherical, and cylindrical objects were grasped, lifted, held, and lowered in response to visual cues. The animal's hand movements were monitored using digital video, together with simultaneously recorded spike trains of neurons in primary somatosensory cortex (S-I) and posterior parietal cortex (PPC). Statistically significant task-related modulation of activity occurred in 78% of neurons tested in the hand area; twice as many cells were facilitated during object acquisition as were depressed. Cortical neurons receiving inputs from tactile receptors in glabrous skin of the fingers and palm, hairy skin of the hand dorsum, or deep receptors in muscles and joints of the hand modulated their firing rates during prehension in consistent and reproducible patterns. Spike trains of individual neurons differed in duration and amplitude of firing, the particular hand behavior(s) monitored, and their sensitivity to the shape of the grasped object. Neurons were classified by statistical analysis into groups whose spike trains were tuned to single task stages, spanned two successive stages, or were multiaction. The classes were not uniformly distributed in specific cytoarchitectonic fields, nor among particular somatosensory modalities. Sequential deformation of parts of the hand as the task progressed was reflected in successive responses of different members of this population. The earliest activity occurred in PPC, where 28% of neurons increased firing prior to hand contact with objects; such neurons may participate in anticipatory motor control programs. Activity shifted rostrally to S-I as the hand contacted the object and manipulated it. The shape of the grasped object had the strongest influence on PPC cells. The results suggest that parietal neurons monitor hand actions during prehension, as well as the physical properties of the grasped object, by shifting activity between populations responsive to hand shaping, grasping, and manipulatory behaviors.
Original languageEnglish
Pages (from-to)329-354
JournalExperimental Brain Research
Volume127
DOIs
Publication statusPublished - 1999

Fingerprint Dive into the research topics of 'Facilitation of neuronal activity in somatosensory and posterior parietal cortex during prehension'. Together they form a unique fingerprint.

Cite this