Facile synthesis of gold core-polymer shell responsive particles

Mark D'Souza-Mathew, Olivier J. Cayre, Timothy N. Hunter, Simon R. Biggs

Research output: Contribution to journalArticlepeer-review

2 Citations (Scopus)


The free adsorption of an end-functionalised weak polybase, poly dimethylaminoethyl methacrylate (pDMAEMA), on the surface of colloidal gold nanoparticles (AuNPs) as a route to produce a responsive core-shell nanoparticle is explored here. Optimal conditions for the physisorption of the polymeric chains onto the colloidal nanoparticles are explored. A dense coverage is facilitated by rapidly mixing the well solvated pH responsive homopolymer, at low pH, into a relatively poor solvent environment, at higher pH, containing a stable dispersion of charge-stabilised gold nanoparticles. The rapid pH change causes the polymer chains to concurrently collapse and adsorb onto the gold nanoparticles. In order to achieve sterically stable, monodisperse and responsive core shell nanoparticles, a crucial factor is the pH difference of the systems prior to their mixing. Once adsorbed, end-functional thiol groups on the adsorbed polymer chains can form more permanent covalent attachments with the core particles. Dynamic light scattering coupled with mobility data of pH titration experiments show that the core-shell particles exhibit a responsive character consistent with the observed potentiometric titration data of the polymer. The same particles demonstrate reversible aggregation when cycled between pH extremes. This is confirmed by shifts in the SPR peak of the corresponding UV-Vis absorption profile. The ease and flexibility of this strategy for core-shell particle production, coupled with the stability and responsiveness of the product, make this a promising colloidal coating mechanism.

Original languageEnglish
Pages (from-to)187-195
Number of pages9
JournalJournal of Colloid and Interface Science
Publication statusPublished - 1 Oct 2013
Externally publishedYes


Dive into the research topics of 'Facile synthesis of gold core-polymer shell responsive particles'. Together they form a unique fingerprint.

Cite this