TY - JOUR
T1 - Extended HYDRUS-1D freezing module emphasizes thermal conductivity schemes for simulation of soil hydrothermal dynamics
AU - Chen, Xiaoyu
AU - Zhao, Yihong
AU - Cheng, Jingqing
AU - Hu, You
AU - Si, Bingcheng
AU - Li, Min
AU - Siddique, Kadambot H.M.
AU - Azad, Nasrin
AU - He, Hailong
N1 - Publisher Copyright:
© 2024 The Author(s)
PY - 2024/8
Y1 - 2024/8
N2 - Soil thermal conductivity (λ) is required to investigate coupled heat and water transport in disciplines such as agriculture, hydrology and engineering. Parameterization schemes or models of λ are also the critical input parameter for various numerical simulation programs like the widely used HYDRUS, one of the most commonly used models for mimicking water, heat, and solute transport. However, λ has not received enough attention in HYDRUS, and it remains unclear how different λ schemes affect the simulated soil water and thermal regimes. Thus, we programmed 24 λ schemes (including two built-in schemes) used in mainstream land surface, hydrological, and soil–vegetation–atmosphere transfer models into HYDRUS-1D (freezing module) to assess the effects of different λ schemes on soil temperature and water content simulations under freezing–thawing. The results showed that the 24 λ schemes performed differently in the simulation of soil temperature within 1 m below ground, with eight λ schemes, i.e., de Vries 1963 scheme/DV1963 (R=0.99), Camillo and Schmugge 1981/CS1981 scheme (R=0.98), Desborough and Pitman 1998/DP1998 scheme (R=0.97), Cass et al. 1984/CS1984 scheme (R=0.96), Shmakin 1998/SA1998 scheme (R=0.95), Dharssi et al. 2009/DI2009 scheme (R=0.95), Becker et al. 1992/BB1992 scheme (R=0.95), Hubrechts 1998/HL1998 scheme (R=0.94), performing superiorly to the built-in λ schemes. This study highlights the importance of choosing appropriate λ schemes in soil water and heat simulations.
AB - Soil thermal conductivity (λ) is required to investigate coupled heat and water transport in disciplines such as agriculture, hydrology and engineering. Parameterization schemes or models of λ are also the critical input parameter for various numerical simulation programs like the widely used HYDRUS, one of the most commonly used models for mimicking water, heat, and solute transport. However, λ has not received enough attention in HYDRUS, and it remains unclear how different λ schemes affect the simulated soil water and thermal regimes. Thus, we programmed 24 λ schemes (including two built-in schemes) used in mainstream land surface, hydrological, and soil–vegetation–atmosphere transfer models into HYDRUS-1D (freezing module) to assess the effects of different λ schemes on soil temperature and water content simulations under freezing–thawing. The results showed that the 24 λ schemes performed differently in the simulation of soil temperature within 1 m below ground, with eight λ schemes, i.e., de Vries 1963 scheme/DV1963 (R=0.99), Camillo and Schmugge 1981/CS1981 scheme (R=0.98), Desborough and Pitman 1998/DP1998 scheme (R=0.97), Cass et al. 1984/CS1984 scheme (R=0.96), Shmakin 1998/SA1998 scheme (R=0.95), Dharssi et al. 2009/DI2009 scheme (R=0.95), Becker et al. 1992/BB1992 scheme (R=0.95), Hubrechts 1998/HL1998 scheme (R=0.94), performing superiorly to the built-in λ schemes. This study highlights the importance of choosing appropriate λ schemes in soil water and heat simulations.
KW - Frozen soils
KW - Hydrothermal coupling
KW - Soil thermal conductivity scheme
KW - Soil thermal regime
KW - Soil water content
UR - http://www.scopus.com/inward/record.url?scp=85196395014&partnerID=8YFLogxK
U2 - 10.1016/j.geoderma.2024.116946
DO - 10.1016/j.geoderma.2024.116946
M3 - Article
AN - SCOPUS:85196395014
SN - 0016-7061
VL - 448
JO - Geoderma
JF - Geoderma
M1 - 116946
ER -