Experimental study on the settling motion of coral grains in still water

Jie Chen, Zhen Yao, Fei He, Changbo Jiang, Chao Jiang, Zhiyuan Wu, Bin Deng, Yuannan Long, Cheng Bian

Research output: Contribution to journalArticlepeer-review

Abstract

Understanding settling motion of coral grains is important in terms of protection of coral reef systems and resotoration of the associated ecosystems. In this paper, a series of laboratory experiments was conducted to investigate the settling motion, using optical microscopy to measure shape parameters of coral grains and the particle-filtering-based object tracking to reconstruct the three-dimensional trajectory. Three characteristic descent regimes, namely, tumbling, chaotic and fluttering, are classified based on the three-dimensional trajectory, the spiral radius variation and the velocity spectrum. It is demonstrated that if one randomly picks up one coral grain, then the probabilities of occurrence of the three regimes are approximately, and, respectively. We have shown that first, the dimensionless settling velocity generally increases with the non-dimensional diameter and Corey shape factor and second, the drag coefficient generally decreases with the Reynolds number and Corey shape factor. Based on this, the applicability of existing models on predicting settling velocity and drag coefficient for coral grains is demonstrated further. Finally, we have proposed extended models for predicting the settling velocity. This study contributes to better understanding of settling motion and improves our predictive capacity of settling velocity for coral grains with complex geometry.

Original languageEnglish
Article numberA15
Number of pages25
JournalJournal of Fluid Mechanics
Volume990
DOIs
Publication statusPublished - 14 Aug 2024

Fingerprint

Dive into the research topics of 'Experimental study on the settling motion of coral grains in still water'. Together they form a unique fingerprint.

Cite this