Exchange flow variability between hypersaline Shark Bay and the ocean

    Research output: Contribution to journalArticlepeer-review

    9 Citations (Web of Science)

    Abstract

    In Shark Bay, a large hypersaline bay in Western Australia, longitudinal density gradients force gravitational circulation that is important for Bay-ocean exchange. First-time observations of vertical stratification and velocity are presented, confirming the presence of a steady, near-bed dense water outflow from Shark Bay’s northern Geographe Channel that persisted through all stages of the tide. Outflow velocities were 2–3 times stronger than the outflows recorded previously in Naturaliste Channel (in the west), and were more resistant to breakdown by tidal mixing. Estimates of turbulent kinetic energy production derived from the variance method showed a more complex structure in the Geographe Channel, due to shear between surface and bottom layers. Turbulence varied between flood and ebb tide, with peak levels of turbulence occurring during reversal of tidal flows. For both channels, the main source of turbulence was tidal flow along the seabed, with the bottom current speed cubed, |Ub3|, providing a reasonable proxy for tidal mixing and prediction of dense water outflows from Shark Bay majority of the time. Orientation and deeper water of the Geographe Channel along the main axis of the longitudinal density gradient provided an explanation for the predominant outflow from the Bay’s northern entrance. These density-driven currents could potentially influence recruitment of commercially fished scallops and prawns through the dispersal and flushing of larvae.
    Original languageEnglish
    Article number65
    Number of pages18
    JournalJournal of Marine Science and Engineering
    Volume6
    Issue number2
    DOIs
    Publication statusPublished - 1 Jun 2018

    Fingerprint

    Dive into the research topics of 'Exchange flow variability between hypersaline Shark Bay and the ocean'. Together they form a unique fingerprint.

    Cite this