Evidence for a TDE origin of the radio transient Cygnus A-2

M. N. De Vries, M. W. Wise, P. E.J. Nulsen, A. Siemiginowska, A. Rowlinson, C. S. Reynolds

Research output: Contribution to journalArticlepeer-review

2 Citations (Scopus)


In 2015, a radio transient named Cygnus A-2 was discovered in Cygnus A with the Very Large Array. Because of its radio brightness (νFν ≈ 6 × 1039 erg s), this transient likely represents a secondary black hole in orbit around the active galactic nucleus. Using Chandra ACIS observations from 2015 to 2017, we have looked for an X-ray counterpart to Cygnus A-2. The separation of 0.42 arcsec means that Cygnus A-2 cannot be spatially resolved, but by comparing the data with simulated marx data, we put an upper limit to the 2-10 keV X-ray luminosity of Cygnus A-2 of 1 × 1043 erg s. Using the Fundamental Plane for accreting black holes, we find that our upper limit to the X-ray flux of Cygnus A-2 in 2015-2017 disfavours the interpretation of Cygnus A-2 as a steadily accreting black hole. We suggest instead that Cygnus A-2 is the radio afterglow of a tidal disruption event (TDE) and that a peak in the 2-10 keV luminosity of the nuclear region in 2013, when it was observed by Swift and NuSTAR, is X-ray emission from the TDE. A TDE could naturally explain the X-ray light curve of the nuclear region, as well as the appearance of a short-lived, fast, and ionized outflow previously detected in the 2013 NuSTAR spectrum. Both the radio and X-ray luminosities fall in between typical luminosities for 'thermal' and 'jetted' TDE types, suggesting that Cygnus A-2 would be unlike previously seen TDEs.

Original languageEnglish
Pages (from-to)3388-3401
Number of pages14
JournalMonthly Notices of the Royal Astronomical Society
Issue number3
Publication statusPublished - 1 Jan 2019
Externally publishedYes


Dive into the research topics of 'Evidence for a TDE origin of the radio transient Cygnus A-2'. Together they form a unique fingerprint.

Cite this