Evaluation of elastic modulus and hardness of thin films by nanoindentation

Y-G. Jung, B.R. Lawn, Mariusz Martyniuk, H. Huang, Xiao Hu

Research output: Contribution to journalArticlepeer-review

200 Citations (Scopus)


Simple equations are proposed for determining elastic modulus and hardness properties of thin films on substrates from nanoindentation experiments. An empirical formulation relates the modulus E and hardness H of the film/substrate bilayer to corresponding material properties of the constituent materials via a power-law relation. Geometrical dependence of E and H is wholly contained in the power-law exponents, expressed here as sigmoidal functions of indenter penetration relative to film thickness. The formulation may be inverted to enable deconvolution of film properties from data on the film/substrate bilayers. Berkovich nanoindentation data for dense oxide and nitride films on silicon substrates are used to validate the equations and to demonstrate the film property deconvolution. Additional data for less dense nitride films are used to illustrate the extent to which film properties may depend on the method of fabrication.
Original languageEnglish
Pages (from-to)3076-3080
JournalJournal of Materials Research
Issue number10
Publication statusPublished - 2004


Dive into the research topics of 'Evaluation of elastic modulus and hardness of thin films by nanoindentation'. Together they form a unique fingerprint.

Cite this