Ethanol Dose- and Time-dependently Increases alpha and beta Subunits of Mitochondrial ATP Synthase of Cultured Neonatal Rat Cardiomyocytes

Keiko Mashimo, Peter G. Arthur, Youkichi Ohno

    Research output: Contribution to journalArticlepeer-review

    15 Citations (Web of Science)

    Abstract

    Mitochondria are target subcellular organelles of ethanol. In this study, the effects of ethanol on protein composition was examined with 2-dimensional electrophoresis of protein extracts from cultured neonatal rat cardiomyocytes exposed to 100 mM ethanol for 24 hours. A putative 13 subunit of mitochondrial ATP synthase was increased, which was confirmed by Western blot. The cellular protein abundances in the alpha and beta subunits of ATP synthase increased in dose (0, 10, 50, and 100 mM)- and time (0.5 hour and 24 hours)-dependent marmers. The DNA microarray analysis of total RNA extract demonstrated that gene expression of the corresponding messenger RNAs of these subunit proteins did not significantly alter due to 24-hour ethanol exposure. Therefore, protein expression of these nuclear-encoded mitochondrial proteins may be regulated at the translational, rather than the transcriptional, level. Alternatively, degradation of these subunit proteins might be decreased. Additionally, cellular ATP content of cardiomyocytes scarcely decreased following 24-hour exposure to any examined concentrations of ethanol. Previous studies, together with this study, have demonstrated that protein abundance of the alpha subunit or beta subunit or both subunits of ATP synthase after ethanol exposure or dysfunctional conditions might differ according to tissue: significant increases in heart but decreases in liver and brain. Thus, it is suggested that the abundance of subunit proteins of mitochondrial ATP synthase in the ethanol-exposed heart, being different from that in the liver and brain, should increase dose-dependently through either translational upregulation or decreased degradation or both to maintain ATP production, as the heart requires much more energy than other tissues for continuing sustained contractions.

    Original languageEnglish
    Pages (from-to)237-245
    Number of pages9
    JournalJournal of Nippon Medical School
    Volume82
    Issue number5
    Publication statusPublished - Oct 2015

    Fingerprint

    Dive into the research topics of 'Ethanol Dose- and Time-dependently Increases alpha and beta Subunits of Mitochondrial ATP Synthase of Cultured Neonatal Rat Cardiomyocytes'. Together they form a unique fingerprint.

    Cite this