Estimation of component reliability in coherent systems with masked data

Agatha S. Rodrigues, Carlos Alberto de Braganca Pereira, Adriano Polpo

Research output: Contribution to journalArticle

Abstract

The reliability of a coherent system of components depends on the reliability of each component and the initial statistical work should be an estimation of the reliability of each component. This paper represents a challenging task because if the system fails, the failure time of a given component cannot be observed, that is, the phenomenon of censored data occurs. A solution for the reliability estimation of components exists when the system failure time and the status of each component are available at the time of system failure. However, it may be difficult to identify the status of the components at the moment of system failure. Such cases represent systems with masked causes of failure. Since parallel and series systems are the simplest systems, numerous solutions have been reported in the literature. To the best of our knowledge, this paper is the first to present the general case of coherent systems without the restriction of an identically distributed lifetime. The three-parameter Weibull Bayesian model is proposed. The Gibbs with the Metropolis–Hasting algorithm supports the statistical work of obtaining the posterior distribution quantities. With several simulations, the excellent performance of the model is evaluated. A real dataset of computer hard drives is analyzed to show the practical relevance of the proposed model.
Original languageEnglish
Pages (from-to)57476-57487
JournalIEEE Access
Volume7
DOIs
Publication statusPublished - 29 Apr 2019

Cite this

Rodrigues, Agatha S. ; de Braganca Pereira, Carlos Alberto ; Polpo, Adriano. / Estimation of component reliability in coherent systems with masked data. In: IEEE Access. 2019 ; Vol. 7. pp. 57476-57487.
@article{b2a7f95d65574f3eb86bcedeb35fdb44,
title = "Estimation of component reliability in coherent systems with masked data",
abstract = "The reliability of a coherent system of components depends on the reliability of each component and the initial statistical work should be an estimation of the reliability of each component. This paper represents a challenging task because if the system fails, the failure time of a given component cannot be observed, that is, the phenomenon of censored data occurs. A solution for the reliability estimation of components exists when the system failure time and the status of each component are available at the time of system failure. However, it may be difficult to identify the status of the components at the moment of system failure. Such cases represent systems with masked causes of failure. Since parallel and series systems are the simplest systems, numerous solutions have been reported in the literature. To the best of our knowledge, this paper is the first to present the general case of coherent systems without the restriction of an identically distributed lifetime. The three-parameter Weibull Bayesian model is proposed. The Gibbs with the Metropolis–Hasting algorithm supports the statistical work of obtaining the posterior distribution quantities. With several simulations, the excellent performance of the model is evaluated. A real dataset of computer hard drives is analyzed to show the practical relevance of the proposed model.",
keywords = "Bayesian three-parameter Weibull model, coherent system, component reliability, masked data, metropolis within Gibbs algorithm",
author = "Rodrigues, {Agatha S.} and {de Braganca Pereira}, {Carlos Alberto} and Adriano Polpo",
year = "2019",
month = "4",
day = "29",
doi = "10.1109/ACCESS.2019.2913675",
language = "English",
volume = "7",
pages = "57476--57487",
journal = "IEEE Access",
issn = "2169-3536",
publisher = "IEEE, Institute of Electrical and Electronics Engineers",

}

Estimation of component reliability in coherent systems with masked data. / Rodrigues, Agatha S.; de Braganca Pereira, Carlos Alberto; Polpo, Adriano.

In: IEEE Access, Vol. 7, 29.04.2019, p. 57476-57487.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Estimation of component reliability in coherent systems with masked data

AU - Rodrigues, Agatha S.

AU - de Braganca Pereira, Carlos Alberto

AU - Polpo, Adriano

PY - 2019/4/29

Y1 - 2019/4/29

N2 - The reliability of a coherent system of components depends on the reliability of each component and the initial statistical work should be an estimation of the reliability of each component. This paper represents a challenging task because if the system fails, the failure time of a given component cannot be observed, that is, the phenomenon of censored data occurs. A solution for the reliability estimation of components exists when the system failure time and the status of each component are available at the time of system failure. However, it may be difficult to identify the status of the components at the moment of system failure. Such cases represent systems with masked causes of failure. Since parallel and series systems are the simplest systems, numerous solutions have been reported in the literature. To the best of our knowledge, this paper is the first to present the general case of coherent systems without the restriction of an identically distributed lifetime. The three-parameter Weibull Bayesian model is proposed. The Gibbs with the Metropolis–Hasting algorithm supports the statistical work of obtaining the posterior distribution quantities. With several simulations, the excellent performance of the model is evaluated. A real dataset of computer hard drives is analyzed to show the practical relevance of the proposed model.

AB - The reliability of a coherent system of components depends on the reliability of each component and the initial statistical work should be an estimation of the reliability of each component. This paper represents a challenging task because if the system fails, the failure time of a given component cannot be observed, that is, the phenomenon of censored data occurs. A solution for the reliability estimation of components exists when the system failure time and the status of each component are available at the time of system failure. However, it may be difficult to identify the status of the components at the moment of system failure. Such cases represent systems with masked causes of failure. Since parallel and series systems are the simplest systems, numerous solutions have been reported in the literature. To the best of our knowledge, this paper is the first to present the general case of coherent systems without the restriction of an identically distributed lifetime. The three-parameter Weibull Bayesian model is proposed. The Gibbs with the Metropolis–Hasting algorithm supports the statistical work of obtaining the posterior distribution quantities. With several simulations, the excellent performance of the model is evaluated. A real dataset of computer hard drives is analyzed to show the practical relevance of the proposed model.

KW - Bayesian three-parameter Weibull model

KW - coherent system

KW - component reliability

KW - masked data

KW - metropolis within Gibbs algorithm

U2 - 10.1109/ACCESS.2019.2913675

DO - 10.1109/ACCESS.2019.2913675

M3 - Article

VL - 7

SP - 57476

EP - 57487

JO - IEEE Access

JF - IEEE Access

SN - 2169-3536

ER -