TY - JOUR
T1 - Estimating COVID Risk During a Period of Pandemic Decline
AU - Inglis, Timothy J.J.
AU - McFadden, Benjamin
AU - Macali, Anthony
PY - 2021/12/17
Y1 - 2021/12/17
N2 - Background: Many parts of the world that succeeded in suppressing epidemic coronavirus spread in 2020 have been caught out by recent changes in the transmission dynamics of SARS-CoV-2. Australia's early success in suppressing COVID-19 resulted in lengthy periods without community transmission. However, a slow vaccine rollout leaves this geographically isolated population vulnerable to leakage of new variants from quarantine, which requires internal travel restrictions, disruptive lockdowns, contact tracing and testing surges. Methods: To assist long term sustainment of limited public health resources, we sought a method of continuous, real-time COVID-19 risk monitoring that could be used to alert non-specialists to the level of epidemic risk on a sub-national scale. After an exploratory data assessment, we selected four COVID-19 metrics used by public health in their periodic threat assessments, applied a business continuity matrix and derived a numeric indicator; the COVID-19 Risk Estimate (CRE), to generate a daily spot CRE, a 3 day net rise and a seven day rolling average. We used open source data updated daily from all Australian states and territories to monitor the CRE for over a year. Results: Upper and lower CRE thresholds were established for the CRE seven day rolling average, corresponding to risk of sustained and potential outbreak propagation, respectively. These CRE thresholds were used in a real-time map of Australian COVID-19 risk estimate distribution by state and territory. Conclusions: The CRE toolkit we developed complements other COVID-19 risk management techniques and provides an early indication of emerging threats to business continuity.
AB - Background: Many parts of the world that succeeded in suppressing epidemic coronavirus spread in 2020 have been caught out by recent changes in the transmission dynamics of SARS-CoV-2. Australia's early success in suppressing COVID-19 resulted in lengthy periods without community transmission. However, a slow vaccine rollout leaves this geographically isolated population vulnerable to leakage of new variants from quarantine, which requires internal travel restrictions, disruptive lockdowns, contact tracing and testing surges. Methods: To assist long term sustainment of limited public health resources, we sought a method of continuous, real-time COVID-19 risk monitoring that could be used to alert non-specialists to the level of epidemic risk on a sub-national scale. After an exploratory data assessment, we selected four COVID-19 metrics used by public health in their periodic threat assessments, applied a business continuity matrix and derived a numeric indicator; the COVID-19 Risk Estimate (CRE), to generate a daily spot CRE, a 3 day net rise and a seven day rolling average. We used open source data updated daily from all Australian states and territories to monitor the CRE for over a year. Results: Upper and lower CRE thresholds were established for the CRE seven day rolling average, corresponding to risk of sustained and potential outbreak propagation, respectively. These CRE thresholds were used in a real-time map of Australian COVID-19 risk estimate distribution by state and territory. Conclusions: The CRE toolkit we developed complements other COVID-19 risk management techniques and provides an early indication of emerging threats to business continuity.
KW - community transmission
KW - COVID-19
KW - delta variant
KW - epidemic risk
KW - health intelligence
KW - health threat assessment
KW - SARS-CoV-2
UR - http://www.scopus.com/inward/record.url?scp=85122088450&partnerID=8YFLogxK
U2 - 10.3389/fpubh.2021.744819
DO - 10.3389/fpubh.2021.744819
M3 - Article
C2 - 34976916
AN - SCOPUS:85122088450
SN - 2296-2565
VL - 9
JO - Frontiers in Public Health
JF - Frontiers in Public Health
M1 - 744819
ER -