TY - JOUR
T1 - Equalization of four cardiovascular risk algorithms after systematic recalibration
T2 - Individual-participant meta-analysis of 86 prospective studies
AU - Emerging Risk Factors Collaboration
AU - Pennells, Lisa
AU - Kaptoge, Stephen
AU - Wood, Angela
AU - Sweeting, Mike
AU - Zhao, Xiaohui
AU - White, Ian
AU - Burgess, Stephen
AU - Willeit, Peter
AU - Bolton, Thomas
AU - Moons, Karel G.M.
AU - Van Der Schouw, Yvonne T.
AU - Selmer, Randi
AU - Khaw, Kay Tee
AU - Gudnason, Vilmundur
AU - Assmann, Gerd
AU - Amouyel, Philippe
AU - Salomaa, Veikko
AU - Kivimaki, Mika
AU - Nordestgaard, Børge G.
AU - Blaha, Michael J.
AU - Kuller, Lewis H.
AU - Brenner, Hermann
AU - Gillum, Richard F.
AU - Meisinger, Christa
AU - Ford, Ian
AU - Knuiman, Matthew W.
AU - Rosengren, Annika
AU - Lawlor, Debbie A.
AU - Völzke, Henry
AU - Cooper, Cyrus
AU - Marín Ibañez, Alejandro
AU - Casiglia, Edoardo
AU - Kauhanen, Jussi
AU - Cooper, Jackie A.
AU - Rodriguez, Beatriz
AU - Sundström, Johan
AU - Barrett-Connor, Elizabeth
AU - Dankner, Rachel
AU - Nietert, Paul J.
AU - Davidson, Karina W.
AU - Wallace, Robert B.
AU - Blazer, Dan G.
AU - Björkelund, Cecilia
AU - Donfrancesco, Chiara
AU - Krumholz, Harlan M.
AU - Nissinen, Aulikki
AU - Davis, Barry R.
AU - Coady, Sean
AU - Whincup, Peter H.
AU - Jørgensen, Torben
AU - Ducimetiere, Pierre
AU - Trevisan, Maurizio
AU - Engström, Gunnar
AU - Crespo, Carlos J.
AU - Meade, Tom W.
AU - Visser, Marjolein
AU - Kromhout, Daan
AU - Kiechl, Stefan
AU - Daimon, Makoto
AU - Price, Jackie F.
AU - Gómez De La Cámara, Agustin
AU - Wouter Jukema, J.
AU - Lamarche, Benoît
AU - Onat, Altan
AU - Simons, Leon A.
AU - Kavousi, Maryam
AU - Ben-Shlomo, Yoav
AU - Gallacher, John
AU - Dekker, Jacqueline M.
AU - Arima, Hisatomi
AU - Shara, Nawar
AU - Tipping, Robert W.
AU - Roussel, Ronan
AU - Brunner, Eric J.
AU - Koenig, Wolfgang
AU - Sakurai, Masaru
AU - Pavlovic, Jelena
AU - Gansevoort, Ron T.
AU - Nagel, Dorothea
AU - Goldbourt, Uri
AU - Barr, Elizabeth L.M.
AU - Palmieri, Luigi
AU - Njølstad, Inger
AU - Sato, Shinichi
AU - Monique Verschuren, W. M.
AU - Varghese, Cherian V.
AU - Graham, Ian
AU - Onuma, Oyere
AU - Greenland, Philip
AU - Woodward, Mark
AU - Ezzati, Majid
AU - Psaty, Bruce M.
AU - Sattar, Naveed
AU - Jackson, Rod
AU - Ridker, Paul M.
AU - Cook, Nancy R.
AU - D'Agostino, Ralph B.
AU - Thompson, Simon G.
AU - Danesh, John
AU - Di Angelantonio, Emanuele
AU - Simpson, Lara M.
AU - Pressel, Sara L.
AU - Couper, David J.
AU - Nambi, Vijay
AU - Matsushita, Kunihiro
AU - Folsom, Aaron R.
AU - Shaw, Jonathan E.
AU - Magliano, Dianna J.
AU - Zimmet, Paul Z.
AU - Wannamethee, S. Goya
AU - Willeit, Johann
AU - Santer, Peter
AU - Egger, Georg
AU - Casas, Juan Pablo
AU - Amuzu, Antointtte
AU - Tikhonoff, Valérie
AU - Sutherland, Susan E.
AU - Cushman, Mary
AU - Søgaard, Anne Johanne
AU - Håheim, Lise Lund
AU - Ariansen, Inger
AU - Tybjærg-Hansen, Anne
AU - Jensen, Gorm B.
AU - Schnohr, Peter
AU - Giampaoli, Simona
AU - Vanuzzo, Diego
AU - Panico, Salvatore
AU - Balkau, Beverley
AU - Bonnet, Fabrice
AU - Marre, Michel
AU - De La Cámara, Agustin Gómez
AU - Rubio Herrera, Miguel Angel
AU - Friedlander, Yechiel
AU - McCallum, John
AU - McLachlan, Stela
AU - Guralnik, Jack
AU - Phillips, Caroline L.
AU - Wareham, Nick
AU - Schöttker, Ben
AU - Saum, Kai Uwe
AU - Holleczek, Bernd
AU - Tolonen, Hanna
AU - Vartiainen, Erkki
AU - Jousilahti, Pekka
AU - Harald, Kennet
AU - Massaro, Joseph M.
AU - Pencina, Michael
AU - Vasan, Ramachandran
AU - Kayama, Takamasa
AU - Kato, Takeo
AU - Oizumi, Toshihide
AU - Jespersen, Jørgen
AU - Møller, Lars
AU - Bladbjerg, Else Marie
AU - Chetrit, A.
AU - Wilhelmsen, Lars
AU - Lissner, Lauren
AU - Dennison, Elaine
AU - Kiyohara, Yutaka
AU - Ninomiya, Toshiharu
AU - Doi, Yasufumi
AU - Nijpels, Giel
AU - Stehouwer, Coen D.A.
AU - Kazumasa, Yamagishi
AU - Iso, Hiroyasu
AU - Kurl, Sudhir
AU - Tuomainen, Tomi Pekka
AU - Salonen, Jukka T.
AU - Deeg, Dorly J.H.
AU - Nilsson, Peter M.
AU - Bo, Hedblad
AU - Melander, Olle
AU - De Boer, Ian H.
AU - DeFilippis, Andrew Paul
AU - Verschuren, W. M.Monique
AU - Watt, Graham
AU - Verschuren, W. M.Monique
AU - Tverdal, Aage
AU - Kirkland, Susan
AU - Shimbo, Daichi
AU - Shaffer, Jonathan
AU - Bakker, Stephan J.L.
AU - Van Der Harst, Pim
AU - Hillege, Hans L.
AU - Dallongeville, Jean
AU - Schulte, Helmut
AU - Trompet, Stella
AU - Smit, Roelof A.J.
AU - Stott, David J.
AU - Després, Jean Pierre
AU - Cantin, Bernard
AU - Dagenais, Gilles R.
AU - Laughlin, Gail
AU - Wingard, Deborah
AU - Aspelund, Thor
AU - Eiriksdottir, Gudny
AU - Gudmundsson, Elias Freyr
AU - Ikram, Arfan
AU - Van Rooij, Frank J.A.
AU - Franco, Oscar H.
AU - Rueda-Ochoa, Oscar L.
AU - Muka, Taulant
AU - Glisic, Marija
AU - Tunstall-Pedoe, Hugh
AU - Howard, Barbara V.
AU - Ying, Zhang
AU - Jolly, Stacey
AU - Davey-Smith, George
AU - Can, Günay
AU - Yüksel, Hüsniye
AU - Nakagawa, Hideaki
AU - Morikawa, Yuko
AU - Miura, Katsuyuki
AU - Ingelsson, Martin
AU - Giedraitis, Vilmantas
AU - Gaziano, J. Michael
AU - Shipley, Martin
AU - Arndt, Volker
AU - Ibañez, Alejandro Marín
AU - Geleijnse, Johanna M.
PY - 2019/2/14
Y1 - 2019/2/14
N2 - Aims There is debate about the optimum algorithm for cardiovascular disease (CVD) risk estimation. We conducted head-to-head comparisons of four algorithms recommended by primary prevention guidelines, before and after 'recalibration', a method that adapts risk algorithms to take account of differences in the risk characteristics of the populations being studied. Methods and results Using individual-participant data on 360 737 participants without CVD at baseline in 86 prospective studies from 22 countries, we compared the Framingham risk score (FRS), Systematic COronary Risk Evaluation (SCORE), pooled cohort equations (PCE), and Reynolds risk score (RRS). We calculated measures of risk discrimination and calibration, and modelled clinical implications of initiating statin therapy in people judged to be at 'high' 10 year CVD risk. Original risk algorithms were recalibrated using the risk factor profile and CVD incidence of target populations. The four algorithms had similar risk discrimination. Before recalibration, FRS, SCORE, and PCE over-predicted CVD risk on average by 10%, 52%, and 41%, respectively, whereas RRS under-predicted by 10%. Original versions of algorithms classified 29-39% of individuals aged ≥40 years as high risk. By contrast, recalibration reduced this proportion to 22-24% for every algorithm. We estimated that to prevent one CVD event, it would be necessary to initiate statin therapy in 44-51 such individuals using original algorithms, in contrast to 37-39 individuals with recalibrated algorithms. Conclusion Before recalibration, the clinical performance of four widely used CVD risk algorithms varied substantially. By contrast, simple recalibration nearly equalized their performance and improved modelled targeting of preventive action to clinical need.
AB - Aims There is debate about the optimum algorithm for cardiovascular disease (CVD) risk estimation. We conducted head-to-head comparisons of four algorithms recommended by primary prevention guidelines, before and after 'recalibration', a method that adapts risk algorithms to take account of differences in the risk characteristics of the populations being studied. Methods and results Using individual-participant data on 360 737 participants without CVD at baseline in 86 prospective studies from 22 countries, we compared the Framingham risk score (FRS), Systematic COronary Risk Evaluation (SCORE), pooled cohort equations (PCE), and Reynolds risk score (RRS). We calculated measures of risk discrimination and calibration, and modelled clinical implications of initiating statin therapy in people judged to be at 'high' 10 year CVD risk. Original risk algorithms were recalibrated using the risk factor profile and CVD incidence of target populations. The four algorithms had similar risk discrimination. Before recalibration, FRS, SCORE, and PCE over-predicted CVD risk on average by 10%, 52%, and 41%, respectively, whereas RRS under-predicted by 10%. Original versions of algorithms classified 29-39% of individuals aged ≥40 years as high risk. By contrast, recalibration reduced this proportion to 22-24% for every algorithm. We estimated that to prevent one CVD event, it would be necessary to initiate statin therapy in 44-51 such individuals using original algorithms, in contrast to 37-39 individuals with recalibrated algorithms. Conclusion Before recalibration, the clinical performance of four widely used CVD risk algorithms varied substantially. By contrast, simple recalibration nearly equalized their performance and improved modelled targeting of preventive action to clinical need.
KW - Calibration
KW - Cardiovascular disease
KW - Discrimination
KW - Risk algorithms
KW - Risk prediction
UR - http://www.scopus.com/inward/record.url?scp=85061592905&partnerID=8YFLogxK
U2 - 10.1093/eurheartj/ehy653
DO - 10.1093/eurheartj/ehy653
M3 - Article
C2 - 30476079
AN - SCOPUS:85061592905
SN - 0195-668X
VL - 40
SP - 621
EP - 631
JO - European Heart Journal
JF - European Heart Journal
IS - 7
ER -