TY - JOUR
T1 - Enhancing intercropping sustainability
T2 - Manipulating soybean rhizosphere microbiome through cropping patterns
AU - Dang, Pengfei
AU - Lu, Chen
AU - Huang, Tiantian
AU - Zhang, Miaomiao
AU - Yang, Ning
AU - Han, Xiaoqing
AU - Xu, Chunhong
AU - Wang, Shiguang
AU - Wan, Chenxi
AU - Qin, Xiaoliang
AU - Siddique, Kadambot H.M.
N1 - Publisher Copyright:
© 2024 Elsevier B.V.
PY - 2024/6/25
Y1 - 2024/6/25
N2 - Understanding the responses of soybean rhizosphere and functional microbiomes in intercropping scenarios holds promise for optimizing nitrogen utilization in legume-based intercropping systems. This study investigated three cropping layouts under film mulching: sole soybean (S), soybean–maize intercropping in one row (IS), and soybean–maize intercropping in two rows (IIS), each subjected to two nitrogen levels: 110 kg N ha−1 (N110) and 180 kg N ha−1 (N180). Our findings reveal that cropping patterns alter bacterial and nifh communities, with approximately 5 % of soybean rhizosphere bacterial amplicon sequence variants (ASVs) and 42 % of rhizosphere nifh ASVs exhibiting altered abundances (termed sensitive ASVs). Root traits and soil properties shape these communities, with root traits exerting greater influence. Sensitive ASVs drive microbial co-occurrence networks and deterministic processes, predicting 85 % of yield variance and 78 % of partial factor productivity of nitrogen, respectively. These alterations impact bacterial and nifh diversity, complexity, stability, and deterministic processes in legume-based intercropping systems, enhancing performance in terms of yield, nitrogen utilization efficiency, land equivalent ratio, root nodule count, and nodule dry weight under IIS patterns with N110 compared to other treatments. Our findings underscore the importance of field management practices in shaping rhizosphere-sensitive ASVs, thereby altering microbial functions and ultimately impacting the productivity of legume-based intercropping systems. This mechanistic understanding of soybean rhizosphere microbial responses to intercropping patterns offers insights for sustainable intercropping enhancements through microbial manipulation.
AB - Understanding the responses of soybean rhizosphere and functional microbiomes in intercropping scenarios holds promise for optimizing nitrogen utilization in legume-based intercropping systems. This study investigated three cropping layouts under film mulching: sole soybean (S), soybean–maize intercropping in one row (IS), and soybean–maize intercropping in two rows (IIS), each subjected to two nitrogen levels: 110 kg N ha−1 (N110) and 180 kg N ha−1 (N180). Our findings reveal that cropping patterns alter bacterial and nifh communities, with approximately 5 % of soybean rhizosphere bacterial amplicon sequence variants (ASVs) and 42 % of rhizosphere nifh ASVs exhibiting altered abundances (termed sensitive ASVs). Root traits and soil properties shape these communities, with root traits exerting greater influence. Sensitive ASVs drive microbial co-occurrence networks and deterministic processes, predicting 85 % of yield variance and 78 % of partial factor productivity of nitrogen, respectively. These alterations impact bacterial and nifh diversity, complexity, stability, and deterministic processes in legume-based intercropping systems, enhancing performance in terms of yield, nitrogen utilization efficiency, land equivalent ratio, root nodule count, and nodule dry weight under IIS patterns with N110 compared to other treatments. Our findings underscore the importance of field management practices in shaping rhizosphere-sensitive ASVs, thereby altering microbial functions and ultimately impacting the productivity of legume-based intercropping systems. This mechanistic understanding of soybean rhizosphere microbial responses to intercropping patterns offers insights for sustainable intercropping enhancements through microbial manipulation.
KW - Assembly processes
KW - Co-occurrence networks
KW - Legume-based intercropping
KW - Nitrogen-fixing bacteria
KW - Rhizosphere bacteria
UR - http://www.scopus.com/inward/record.url?scp=85192271620&partnerID=8YFLogxK
U2 - 10.1016/j.scitotenv.2024.172714
DO - 10.1016/j.scitotenv.2024.172714
M3 - Article
C2 - 38679108
AN - SCOPUS:85192271620
SN - 0048-9697
VL - 931
JO - Science of the Total Environment
JF - Science of the Total Environment
M1 - 172714
ER -