Projects per year
Abstract
Bearing capacity of shallow foundations is higher following preload (or self-weight)-induced consolidation because the soil strength changes, and perhaps because the failure mechanism changes. Previous studies have illustrated this effect by plotting or predicting changes in either bearing capacity factor or strength. In this study, the relative contribution of these two effects is explored. This is achieved by formalising a definition of bearing capacity factor, which is described in terms of the average strength mobilised in the deformation mechanism at failure. Using the alternative definition of bearing capacity factor, the gain in foundation capacity is shown to be almost entirely due to changes in soil strength, rather than bearing capacity factor, which remains largely unaffected by the strength gains. This observation should encourage future studies into consolidated bearing capacity to present gains in capacity in terms of changes in mobilised strength rather than changes in bearing capacity factors, and supports the use of prediction methods that focus on defining the change in soil strength.
Original language | English |
---|---|
Pages (from-to) | 166-173 |
Number of pages | 8 |
Journal | Geotechnique |
Volume | 69 |
Issue number | 2 |
DOIs | |
Publication status | Published - 1 Feb 2019 |
Fingerprint
Dive into the research topics of 'Enhancement of bearing capacity from consolidation: due to changing strength or failure mechanism?'. Together they form a unique fingerprint.Projects
- 1 Finished
-
ARC ITRH for Offshore Floating Facilities
Watson, P. (Investigator 01), Cassidy, M. (Investigator 02), Efthymiou, M. (Investigator 03), Ivey, G. (Investigator 04), Jones, N. (Investigator 05), Cheng, L. (Investigator 06), Draper, S. (Investigator 07), Zhao, M. (Investigator 08), Randolph, M. (Investigator 09), Gaudin, C. (Investigator 10), O'Loughlin, C. (Investigator 11), Hodkiewicz, M. (Investigator 12), Cripps, E. (Investigator 13), Zhao, W. (Investigator 14), Wolgamot, H. (Investigator 15), White, D. (Investigator 16), Doherty, J. (Investigator 17), Taylor, P. (Investigator 18), Stanier, S. (Investigator 19) & Gourvenec, S. (Investigator 20)
ARC Australian Research Council
1/01/14 → 30/12/21
Project: Research