Projects per year
Abstract
The synthetic viability of the hydrazine- and phosgene-free synthesis of 1,5-dimethyl oxo-verdazyl radicals has been improved via a detailed study investigating the influence of the aryl substituent on tetrazinanone ring formation. Although it is well established that functionalisation at the C3 position of the tetrazinanone ring does not influence the nature of the radical, it is crucial in applications development. The synthetic route involves a 4-step sequence: Schiff base condensation of a carbohydrazide with an arylaldehyde, alkylation, ring closure then subsequent oxidation to the radical. We found that the presence of strong electron-donating substituents and electron rich heterocycles, result in a significant reduction in yield during both the alkylation and ring closure steps. This can, in part, be alleviated by milder alkylation conditions and further substitution of the aryl group. In comparison, more facile formation of the tetrazine ring was observed with examples containing electron-withdrawing groups and with meta- or para-substitution. Density functional theory suggests that the ring closure proceeds via the formation of an ion pair. Electron paramagnetic resonance spectroscopy provides insight into the precise electronic structure of the radical with small variations in hyperfine coupling constants revealing subtle differences. This journal is
Original language | English |
---|---|
Pages (from-to) | 10120-10138 |
Number of pages | 19 |
Journal | Organic and Biomolecular Chemistry |
Volume | 19 |
Issue number | 46 |
DOIs | |
Publication status | Published - 14 Dec 2021 |
Fingerprint
Dive into the research topics of 'Enhanced synthesis of oxo-verdazyl radicals bearing sterically-and electronically-diverse C3-substituents'. Together they form a unique fingerprint.Projects
- 1 Finished
-
Fill it, Squeeze it, Crush it: Extreme Gas Uptake in Microporous Materials
Moggach, S. (Investigator 01)
ARC Australian Research Council
1/10/20 → 30/09/24
Project: Research