Energy frameworks and a topological analysis of the supramolecular features in in situ cryocrystallized liquids: tuning the weak interaction landscape via fluorination

Mark A. Spackman, D Dey, S Bhandary, Sajesh P. Thomas, D Chopra

Research output: Contribution to journalArticle

33 Citations (Scopus)

Abstract

Weak intermolecular interactions observed in crystalline materials are often influenced or forced by stronger interactions such as classical hydrogen bonds. Room temperature liquids offer a scenario where such strong interactions are absent so that the role and nature of the weak interactions can be studied more reliably. In this context, we have analyzed the common organic reagent benzoyl chloride (BC) and a series of its fluorinated derivatives using in situ cryocrystallography. The intermolecular interaction energies have been estimated and their topologies explored using energy framework analysis in a series of ten benzoyl chloride analogues, which reveal that the pi center dot center dot center dot pi stacking interactions serve as the primary building blocks in these crystal structures. The crystal packing is also stabilized by a variety of interaction motifs involving weak C-H center dot center dot center dot O/F/Cl hydrogen bonds and F center dot center dot center dot F, F center dot center dot center dot Cl, and Cl center dot center dot center dot Cl interactions. It is found that fluorination alters the electrostatic nature of the benzoyl chlorides, with subsequent changes in the formation of different weak interaction motifs. The effects of fluorination on these weak intermolecular interactions have been systematically analyzed further via detailed inputs from a topological analysis of the electron density and Hirshfeld surface analysis.
Original languageEnglish
Pages (from-to)31811--31820
JournalPhysical Chemistry Chemical Physics
Volume18
Issue number46
Publication statusPublished - 2016

Fingerprint

Dive into the research topics of 'Energy frameworks and a topological analysis of the supramolecular features in in situ cryocrystallized liquids: tuning the weak interaction landscape via fluorination'. Together they form a unique fingerprint.

Cite this