Abstract
Although the role of Ca2+ influx channels in oxidative stress signaling and cross-tolerance in plants is well established, little is known about the role of active Ca2+ efflux systems in this process. In our recent paper, we reported Potato Virus X (PVX)- induced acquired resistance to oxidative stress in Nicotiana benthamiana and showed the critical role of plasma membrane Ca2+/H+ exchangers in this process. The current study continues this research. Using biochemical and electrophysiological approaches, we reveal that both endomembrane P2A and P2B Ca2+-ATPases play significant roles in adaptive responses to oxidative stress by removing excessive Ca2+ from the cytosol, and that their functional expression is significantly altered in PVX-inoculated plants. These findings highlight the crucial role of Ca2+ efflux systems in acquired tolerance to oxidative stress and open up prospects for practical applications in agriculture, after in-depth comprehension of the fundamental mechanisms involved in common responses to environmental factors at the genomic, cellular and organismal levels.
Original language | English |
---|---|
Pages (from-to) | 1053-1056 |
Number of pages | 4 |
Journal | Plant Signaling and Behavior |
Volume | 6 |
Issue number | 7 |
DOIs | |
Publication status | Published - 2011 |
Externally published | Yes |