Elevated CO2 and Nitrogen Supply Boost N Use Efficiency and Wheat (T. aestivum cv. Yunmai) Growth and Differentiate Soil Microbial Communities Related to Ammonia Oxidization

Xingshui Dong, Hui Lin, Feng Wang, Songmei Shi, Sharifullah Sharifi, Shuai Wang, Junwei Ma, Xinhua He

Research output: Contribution to journalArticlepeer-review

Abstract

Elevated CO2 levels (eCO2) pose challenges to wheat (Triticum aestivum L.) growth, potentially leading to a decline in quality and productivity. This study addresses the effects of two ambient CO2 concentrations (aCO2, daytime/nighttime = 410/450 ± 30 ppm and eCO2, 550/600 ± 30 ppm) and two nitrogen (N) supplements (without N supply—N0 and with 100 mg N supply as urea per kg soil—N100) on wheat (T. aestivum cv. Yunmai) growth, N accumulation, and soil microbial communities related to ammonia oxidization. The data showed that the N supply effectively mitigated the negative impacts of eCO2 on wheat growth by reducing intercellular CO2 concentrations while enhancing photosynthesis parameters. Notably, the N supply significantly increased N concentrations in wheat tissues and biomass production, thereby boosting N accumulation in seeds, shoots, and roots. eCO2 increased the agronomic efficiency of applied N (AEN) and the physiological efficiency of applied N (PEN) under N supply. Plant tissue N concentrations and accumulations are positively related to plant biomass production and soil NO3-N. Additionally, the N supply increased the richness and evenness of the soil microbial community, particularly Nitrososphaeraceae, Nitrosospira, and Nitrosomonas, which responded differently to N availability under both aCO2 and eCO2. These results underscore the importance and complexity of optimizing N supply and eCO2 for enhancing crop tissue N accumulation and yield production as well as activating nitrification-related microbial activities for soil inorganic N availability under future global environment change scenarios.

Original languageEnglish
Article number2345
JournalPlants
Volume13
Issue number17
DOIs
Publication statusPublished - 23 Sept 2024

Fingerprint

Dive into the research topics of 'Elevated CO2 and Nitrogen Supply Boost N Use Efficiency and Wheat (T. aestivum cv. Yunmai) Growth and Differentiate Soil Microbial Communities Related to Ammonia Oxidization'. Together they form a unique fingerprint.

Cite this