TY - JOUR
T1 - EGFRvIII-mediated transactivation of receptor tyrosine kinases in glioma
T2 - Mechanism and therapeutic implications
AU - Greenall, Sameer A.
AU - Donoghue, Jacqueline F.
AU - Van Sinderen, M.
AU - Dubljevic, V.
AU - Budiman, S.
AU - Devlin, M.
AU - Street, I.
AU - Adams, T. E.
AU - Johns, T. G.
PY - 2015/10/8
Y1 - 2015/10/8
N2 - A truncation mutant of the epidermal growth factor receptor, EGFRvIII, is commonly expressed in glioma, an incurable brain cancer. EGFRvIII is tumorigenic, in part, through its transactivation of other receptor tyrosine kinases (RTKs). Preventing the effects of this transactivation could form part of an effective therapy for glioma; however, the mechanism by which the transactivation occurs is unknown. Focusing on the RTK MET, we show that MET transactivation in U87MG human glioma cells in vitro is proportional to EGFRvIII activity and involves MET heterodimerization associated with a focal adhesion kinase (FAK) scaffold. The transactivation of certain other RTKs was, however, independent of FAK. Simultaneously targeting EGFRvIII (with panitumumab) and the transactivated RTKs themselves (with motesanib) in an intracranial mouse model of glioma resulted in significantly greater survival than with either agent alone, indicating that cotargeting these RTKs has potent antitumor efficacy and providing a strategy for treating EGFRvIII-expressing gliomas, which are usually refractory to treatment.
AB - A truncation mutant of the epidermal growth factor receptor, EGFRvIII, is commonly expressed in glioma, an incurable brain cancer. EGFRvIII is tumorigenic, in part, through its transactivation of other receptor tyrosine kinases (RTKs). Preventing the effects of this transactivation could form part of an effective therapy for glioma; however, the mechanism by which the transactivation occurs is unknown. Focusing on the RTK MET, we show that MET transactivation in U87MG human glioma cells in vitro is proportional to EGFRvIII activity and involves MET heterodimerization associated with a focal adhesion kinase (FAK) scaffold. The transactivation of certain other RTKs was, however, independent of FAK. Simultaneously targeting EGFRvIII (with panitumumab) and the transactivated RTKs themselves (with motesanib) in an intracranial mouse model of glioma resulted in significantly greater survival than with either agent alone, indicating that cotargeting these RTKs has potent antitumor efficacy and providing a strategy for treating EGFRvIII-expressing gliomas, which are usually refractory to treatment.
UR - http://www.scopus.com/inward/record.url?scp=84943664438&partnerID=8YFLogxK
U2 - 10.1038/onc.2014.448
DO - 10.1038/onc.2014.448
M3 - Article
C2 - 25659577
AN - SCOPUS:84943664438
SN - 0950-9232
VL - 34
SP - 5277
EP - 5287
JO - Oncogene
JF - Oncogene
IS - 41
ER -