Effects of waveform model systematics on the interpretation of GW150914

LIGO Scientific Collaboration and Virgo Collaboration

Research output: Contribution to journalArticle

47 Citations (Scopus)

Abstract

Parameter estimates of GW150914 were obtained using Bayesian inference, based on three semi-analytic waveform models for binary black hole coalescences. These waveform models differ from each other in their treatment of black hole spins, and all three models make some simplifying assumptions, notably to neglect sub-dominant waveform harmonic modes and orbital eccentricity. Furthermore, while the models are calibrated to agree with waveforms obtained by full numerical solutions of Einstein's equations, any such calibration is accurate only to some non-zero tolerance and is limited by the accuracy of the underlying phenomenology, availability, quality, and parameter-space coverage of numerical simulations. This paper complements the original analyses of GW150914 with an investigation of the effects of possible systematic errors in the waveform models on estimates of its source parameters. To test for systematic errors we repeat the original Bayesian analysis on mock signals from numerical simulations of a series of binary configurations with parameters similar to those found for GW150914. Overall, we find no evidence for a systematic bias relative to the statistical error of the original parameter recovery of GW150914 due to modeling approximations or modeling inaccuracies. However, parameter biases are found to occur for some configurations disfavored by the data of GW150914: for binaries inclined edge-on to the detector over a small range of choices of polarization angles, and also for eccentricities greater than ∼0.05. For signals with higher signal-to-noise ratio than GW150914, or in other regions of the binary parameter space (lower masses, larger mass ratios, or higher spins), we expect that systematic errors in current waveform models may impact gravitational-wave measurements, making more accurate models desirable for future observations.

Original languageEnglish
Article number104002
JournalClassical and Quantum Gravity
Volume34
Issue number10
DOIs
Publication statusPublished - 12 Apr 2017

Fingerprint

waveforms
systematic errors
eccentricity
Einstein equations
estimates
configurations
inference
phenomenology
mass ratios
complement
gravitational waves
coalescing
availability
signal to noise ratios
simulation
recovery
harmonics
orbitals
detectors
polarization

Cite this

LIGO Scientific Collaboration and Virgo Collaboration. / Effects of waveform model systematics on the interpretation of GW150914. In: Classical and Quantum Gravity. 2017 ; Vol. 34, No. 10.
@article{deb39f32996546a08469ed06567f9727,
title = "Effects of waveform model systematics on the interpretation of GW150914",
abstract = "Parameter estimates of GW150914 were obtained using Bayesian inference, based on three semi-analytic waveform models for binary black hole coalescences. These waveform models differ from each other in their treatment of black hole spins, and all three models make some simplifying assumptions, notably to neglect sub-dominant waveform harmonic modes and orbital eccentricity. Furthermore, while the models are calibrated to agree with waveforms obtained by full numerical solutions of Einstein's equations, any such calibration is accurate only to some non-zero tolerance and is limited by the accuracy of the underlying phenomenology, availability, quality, and parameter-space coverage of numerical simulations. This paper complements the original analyses of GW150914 with an investigation of the effects of possible systematic errors in the waveform models on estimates of its source parameters. To test for systematic errors we repeat the original Bayesian analysis on mock signals from numerical simulations of a series of binary configurations with parameters similar to those found for GW150914. Overall, we find no evidence for a systematic bias relative to the statistical error of the original parameter recovery of GW150914 due to modeling approximations or modeling inaccuracies. However, parameter biases are found to occur for some configurations disfavored by the data of GW150914: for binaries inclined edge-on to the detector over a small range of choices of polarization angles, and also for eccentricities greater than ∼0.05. For signals with higher signal-to-noise ratio than GW150914, or in other regions of the binary parameter space (lower masses, larger mass ratios, or higher spins), we expect that systematic errors in current waveform models may impact gravitational-wave measurements, making more accurate models desirable for future observations.",
keywords = "gravitational waves, GW150914, numerical relativity, parameter estimation, systematic errors, waveform models",
author = "{LIGO Scientific Collaboration and Virgo Collaboration} and Abbott, {B. P.} and R. Abbott and Abbott, {T. D.} and Abernathy, {M. R.} and F. Acernese and K. Ackley and C. Adams and T. Adams and P. Addesso and Adhikari, {R. X.} and Adya, {V. B.} and C. Affeldt and M. Agathos and K. Agatsuma and N. Aggarwal and Aguiar, {O. D.} and L. Aiello and A. Ain and P. Ajith and B. Allen and A. Allocca and Altin, {P. A.} and A. Ananyeva and Anderson, {S. B.} and Anderson, {W. G.} and S. Appert and K. Arai and Araya, {M. C.} and Areeda, {J. S.} and N. Arnaud and Arun, {K. G.} and S. Ascenzi and G. Ashton and M. Ast and Aston, {S. M.} and P. Astone and P. Aufmuth and C. Aulbert and A. Avila-Alvarez and S. Babak and P. Bacon and Bader, {M. K.M.} and Baker, {P. T.} and F. Baldaccini and G. Ballardin and Ballmer, {S. W.} and Barayoga, {J. C.} and Barclay, {S. E.} and Barish, {B. C.} and D. Barker and F. Barone and B. Barr and L. Barsotti and M. Barsuglia and D. Barta and J. Bartlett and I. Bartos and R. Bassiri and A. Basti and Batch, {J. C.} and C. Baune and V. Bavigadda and M. Bazzan and C. Beer and M. Bejger and I. Belahcene and M. Belgin and Bell, {A. S.} and Berger, {B. K.} and G. Bergmann and Berry, {C. P.L.} and D. Bersanetti and A. Bertolini and J. Betzwieser and S. Bhagwat and R. Bhandare and Bilenko, {I. A.} and G. Billingsley and Billman, {C. R.} and J. Birch and R. Birney and O. Birnholtz and S. Biscans and A. Bisht and M. Bitossi and C. Biwer and Bizouard, {M. A.} and Blackburn, {J. K.} and J. Blackman and Blair, {C. D.} and Blair, {D. G.} and Blair, {R. M.} and S. Bloemen and O. Bock and M. Boer and G. Bogaert and A. Bohe and F. Bondu and R. Bonnand and Boom, {B. A.} and R. Bork and V. Boschi and S. Bose and Y. Bouffanais and A. Bozzi and C. Bradaschia and Brady, {P. R.} and Braginsky, {V. B.} and M. Branchesi and Brau, {J. E.} and T. Briant and A. Brillet and M. Brinkmann and V. Brisson and P. Brockill and Broida, {J. E.} and Brooks, {A. F.} and Brown, {D. A.} and Brown, {D. D.} and Brown, {N. M.} and S. Brunett and Buchanan, {C. C.} and A. Buikema and T. Bulik and Bulten, {H. J.} and A. Buonanno and D. Buskulic and C. Buy and Byer, {R. L.} and M. Cabero and L. Cadonati and G. Cagnoli and C. Cahillane and {Calder{\'o}n Bustillo}, J. and Callister, {T. A.} and E. Calloni and Camp, {J. B.} and Cannon, {K. C.} and H. Cao and J. Cao and Capano, {C. D.} and E. Capocasa and F. Carbognani and S. Caride and {Casanueva Diaz}, J. and C. Casentini and S. Caudill and M. Cavagli{\`a} and F. Cavalier and R. Cavalieri and G. Cella and Cepeda, {C. B.} and {Cerboni Baiardi}, L. and G. Cerretani and E. Cesarini and Chamberlin, {S. J.} and M. Chan and S. Chao and P. Charlton and E. Chassande-Mottin and Cheeseboro, {B. D.} and Chen, {H. Y.} and Y. Chen and Cheng, {H. P.} and A. Chincarini and A. Chiummo and T. Chmiel and Cho, {H. S.} and M. Cho and Chow, {J. H.} and N. Christensen and Q. Chu and Chua, {A. J.K.} and S. Chua and S. Chung and G. Ciani and F. Clara and Clark, {J. A.} and F. Cleva and C. Cocchieri and E. Coccia and Cohadon, {P. F.} and A. Colla and Collette, {C. G.} and L. Cominsky and M. Constancio and L. Conti and Cooper, {S. J.} and Corbitt, {T. R.} and N. Cornish and A. Corsi and S. Cortese and Costa, {C. A.} and Coughlin, {M. W.} and Coughlin, {S. B.} and Coulon, {J. P.} and Countryman, {S. T.} and P. Couvares and Covas, {P. B.} and Cowan, {E. E.} and Coward, {D. M.} and Cowart, {M. J.} and Coyne, {D. C.} and R. Coyne and Creighton, {J. D.E.} and Creighton, {T. D.} and J. Cripe and Crowder, {S. G.} and Cullen, {T. J.} and A. Cumming and L. Cunningham and E. Cuoco and {Dal Canton}, T. and Danilishin, {S. L.} and S. D'Antonio and K. Danzmann and A. Dasgupta and {Da Silva Costa}, {C. F.} and V. Dattilo and I. Dave and M. Davier and Davies, {G. S.} and D. Davis and Daw, {E. J.} and B. Day and R. Day and S. De and D. Debra and G. Debreczeni and J. Degallaix and {De Laurentis}, M. and S. Del{\'e}glise and {Del Pozzo}, W. and T. Denker and T. Dent and V. Dergachev and {De Rosa}, R. and Derosa, {R. T.} and R. Desalvo and J. Devenson and Devine, {R. C.} and S. Dhurandhar and Howell, {E. J.} and L. Ju and T. Kaur and Y. Ma and {Van Heijningen}, {J. V.} and L. Wen and C. Zhao and Zhu, {X. J.}",
year = "2017",
month = "4",
day = "12",
doi = "10.1088/1361-6382/aa6854",
language = "English",
volume = "34",
journal = "Classical and Quantum Gravity",
issn = "0264-9381",
publisher = "IOP Publishing",
number = "10",

}

Effects of waveform model systematics on the interpretation of GW150914. / LIGO Scientific Collaboration and Virgo Collaboration.

In: Classical and Quantum Gravity, Vol. 34, No. 10, 104002, 12.04.2017.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Effects of waveform model systematics on the interpretation of GW150914

AU - LIGO Scientific Collaboration and Virgo Collaboration

AU - Abbott, B. P.

AU - Abbott, R.

AU - Abbott, T. D.

AU - Abernathy, M. R.

AU - Acernese, F.

AU - Ackley, K.

AU - Adams, C.

AU - Adams, T.

AU - Addesso, P.

AU - Adhikari, R. X.

AU - Adya, V. B.

AU - Affeldt, C.

AU - Agathos, M.

AU - Agatsuma, K.

AU - Aggarwal, N.

AU - Aguiar, O. D.

AU - Aiello, L.

AU - Ain, A.

AU - Ajith, P.

AU - Allen, B.

AU - Allocca, A.

AU - Altin, P. A.

AU - Ananyeva, A.

AU - Anderson, S. B.

AU - Anderson, W. G.

AU - Appert, S.

AU - Arai, K.

AU - Araya, M. C.

AU - Areeda, J. S.

AU - Arnaud, N.

AU - Arun, K. G.

AU - Ascenzi, S.

AU - Ashton, G.

AU - Ast, M.

AU - Aston, S. M.

AU - Astone, P.

AU - Aufmuth, P.

AU - Aulbert, C.

AU - Avila-Alvarez, A.

AU - Babak, S.

AU - Bacon, P.

AU - Bader, M. K.M.

AU - Baker, P. T.

AU - Baldaccini, F.

AU - Ballardin, G.

AU - Ballmer, S. W.

AU - Barayoga, J. C.

AU - Barclay, S. E.

AU - Barish, B. C.

AU - Barker, D.

AU - Barone, F.

AU - Barr, B.

AU - Barsotti, L.

AU - Barsuglia, M.

AU - Barta, D.

AU - Bartlett, J.

AU - Bartos, I.

AU - Bassiri, R.

AU - Basti, A.

AU - Batch, J. C.

AU - Baune, C.

AU - Bavigadda, V.

AU - Bazzan, M.

AU - Beer, C.

AU - Bejger, M.

AU - Belahcene, I.

AU - Belgin, M.

AU - Bell, A. S.

AU - Berger, B. K.

AU - Bergmann, G.

AU - Berry, C. P.L.

AU - Bersanetti, D.

AU - Bertolini, A.

AU - Betzwieser, J.

AU - Bhagwat, S.

AU - Bhandare, R.

AU - Bilenko, I. A.

AU - Billingsley, G.

AU - Billman, C. R.

AU - Birch, J.

AU - Birney, R.

AU - Birnholtz, O.

AU - Biscans, S.

AU - Bisht, A.

AU - Bitossi, M.

AU - Biwer, C.

AU - Bizouard, M. A.

AU - Blackburn, J. K.

AU - Blackman, J.

AU - Blair, C. D.

AU - Blair, D. G.

AU - Blair, R. M.

AU - Bloemen, S.

AU - Bock, O.

AU - Boer, M.

AU - Bogaert, G.

AU - Bohe, A.

AU - Bondu, F.

AU - Bonnand, R.

AU - Boom, B. A.

AU - Bork, R.

AU - Boschi, V.

AU - Bose, S.

AU - Bouffanais, Y.

AU - Bozzi, A.

AU - Bradaschia, C.

AU - Brady, P. R.

AU - Braginsky, V. B.

AU - Branchesi, M.

AU - Brau, J. E.

AU - Briant, T.

AU - Brillet, A.

AU - Brinkmann, M.

AU - Brisson, V.

AU - Brockill, P.

AU - Broida, J. E.

AU - Brooks, A. F.

AU - Brown, D. A.

AU - Brown, D. D.

AU - Brown, N. M.

AU - Brunett, S.

AU - Buchanan, C. C.

AU - Buikema, A.

AU - Bulik, T.

AU - Bulten, H. J.

AU - Buonanno, A.

AU - Buskulic, D.

AU - Buy, C.

AU - Byer, R. L.

AU - Cabero, M.

AU - Cadonati, L.

AU - Cagnoli, G.

AU - Cahillane, C.

AU - Calderón Bustillo, J.

AU - Callister, T. A.

AU - Calloni, E.

AU - Camp, J. B.

AU - Cannon, K. C.

AU - Cao, H.

AU - Cao, J.

AU - Capano, C. D.

AU - Capocasa, E.

AU - Carbognani, F.

AU - Caride, S.

AU - Casanueva Diaz, J.

AU - Casentini, C.

AU - Caudill, S.

AU - Cavaglià, M.

AU - Cavalier, F.

AU - Cavalieri, R.

AU - Cella, G.

AU - Cepeda, C. B.

AU - Cerboni Baiardi, L.

AU - Cerretani, G.

AU - Cesarini, E.

AU - Chamberlin, S. J.

AU - Chan, M.

AU - Chao, S.

AU - Charlton, P.

AU - Chassande-Mottin, E.

AU - Cheeseboro, B. D.

AU - Chen, H. Y.

AU - Chen, Y.

AU - Cheng, H. P.

AU - Chincarini, A.

AU - Chiummo, A.

AU - Chmiel, T.

AU - Cho, H. S.

AU - Cho, M.

AU - Chow, J. H.

AU - Christensen, N.

AU - Chu, Q.

AU - Chua, A. J.K.

AU - Chua, S.

AU - Chung, S.

AU - Ciani, G.

AU - Clara, F.

AU - Clark, J. A.

AU - Cleva, F.

AU - Cocchieri, C.

AU - Coccia, E.

AU - Cohadon, P. F.

AU - Colla, A.

AU - Collette, C. G.

AU - Cominsky, L.

AU - Constancio, M.

AU - Conti, L.

AU - Cooper, S. J.

AU - Corbitt, T. R.

AU - Cornish, N.

AU - Corsi, A.

AU - Cortese, S.

AU - Costa, C. A.

AU - Coughlin, M. W.

AU - Coughlin, S. B.

AU - Coulon, J. P.

AU - Countryman, S. T.

AU - Couvares, P.

AU - Covas, P. B.

AU - Cowan, E. E.

AU - Coward, D. M.

AU - Cowart, M. J.

AU - Coyne, D. C.

AU - Coyne, R.

AU - Creighton, J. D.E.

AU - Creighton, T. D.

AU - Cripe, J.

AU - Crowder, S. G.

AU - Cullen, T. J.

AU - Cumming, A.

AU - Cunningham, L.

AU - Cuoco, E.

AU - Dal Canton, T.

AU - Danilishin, S. L.

AU - D'Antonio, S.

AU - Danzmann, K.

AU - Dasgupta, A.

AU - Da Silva Costa, C. F.

AU - Dattilo, V.

AU - Dave, I.

AU - Davier, M.

AU - Davies, G. S.

AU - Davis, D.

AU - Daw, E. J.

AU - Day, B.

AU - Day, R.

AU - De, S.

AU - Debra, D.

AU - Debreczeni, G.

AU - Degallaix, J.

AU - De Laurentis, M.

AU - Deléglise, S.

AU - Del Pozzo, W.

AU - Denker, T.

AU - Dent, T.

AU - Dergachev, V.

AU - De Rosa, R.

AU - Derosa, R. T.

AU - Desalvo, R.

AU - Devenson, J.

AU - Devine, R. C.

AU - Dhurandhar, S.

AU - Howell, E. J.

AU - Ju, L.

AU - Kaur, T.

AU - Ma, Y.

AU - Van Heijningen, J. V.

AU - Wen, L.

AU - Zhao, C.

AU - Zhu, X. J.

PY - 2017/4/12

Y1 - 2017/4/12

N2 - Parameter estimates of GW150914 were obtained using Bayesian inference, based on three semi-analytic waveform models for binary black hole coalescences. These waveform models differ from each other in their treatment of black hole spins, and all three models make some simplifying assumptions, notably to neglect sub-dominant waveform harmonic modes and orbital eccentricity. Furthermore, while the models are calibrated to agree with waveforms obtained by full numerical solutions of Einstein's equations, any such calibration is accurate only to some non-zero tolerance and is limited by the accuracy of the underlying phenomenology, availability, quality, and parameter-space coverage of numerical simulations. This paper complements the original analyses of GW150914 with an investigation of the effects of possible systematic errors in the waveform models on estimates of its source parameters. To test for systematic errors we repeat the original Bayesian analysis on mock signals from numerical simulations of a series of binary configurations with parameters similar to those found for GW150914. Overall, we find no evidence for a systematic bias relative to the statistical error of the original parameter recovery of GW150914 due to modeling approximations or modeling inaccuracies. However, parameter biases are found to occur for some configurations disfavored by the data of GW150914: for binaries inclined edge-on to the detector over a small range of choices of polarization angles, and also for eccentricities greater than ∼0.05. For signals with higher signal-to-noise ratio than GW150914, or in other regions of the binary parameter space (lower masses, larger mass ratios, or higher spins), we expect that systematic errors in current waveform models may impact gravitational-wave measurements, making more accurate models desirable for future observations.

AB - Parameter estimates of GW150914 were obtained using Bayesian inference, based on three semi-analytic waveform models for binary black hole coalescences. These waveform models differ from each other in their treatment of black hole spins, and all three models make some simplifying assumptions, notably to neglect sub-dominant waveform harmonic modes and orbital eccentricity. Furthermore, while the models are calibrated to agree with waveforms obtained by full numerical solutions of Einstein's equations, any such calibration is accurate only to some non-zero tolerance and is limited by the accuracy of the underlying phenomenology, availability, quality, and parameter-space coverage of numerical simulations. This paper complements the original analyses of GW150914 with an investigation of the effects of possible systematic errors in the waveform models on estimates of its source parameters. To test for systematic errors we repeat the original Bayesian analysis on mock signals from numerical simulations of a series of binary configurations with parameters similar to those found for GW150914. Overall, we find no evidence for a systematic bias relative to the statistical error of the original parameter recovery of GW150914 due to modeling approximations or modeling inaccuracies. However, parameter biases are found to occur for some configurations disfavored by the data of GW150914: for binaries inclined edge-on to the detector over a small range of choices of polarization angles, and also for eccentricities greater than ∼0.05. For signals with higher signal-to-noise ratio than GW150914, or in other regions of the binary parameter space (lower masses, larger mass ratios, or higher spins), we expect that systematic errors in current waveform models may impact gravitational-wave measurements, making more accurate models desirable for future observations.

KW - gravitational waves

KW - GW150914

KW - numerical relativity

KW - parameter estimation

KW - systematic errors

KW - waveform models

UR - http://www.scopus.com/inward/record.url?scp=85018959494&partnerID=8YFLogxK

U2 - 10.1088/1361-6382/aa6854

DO - 10.1088/1361-6382/aa6854

M3 - Article

VL - 34

JO - Classical and Quantum Gravity

JF - Classical and Quantum Gravity

SN - 0264-9381

IS - 10

M1 - 104002

ER -