TY - JOUR
T1 - Effects of homocysteine lowering with B vitamins on cognitive aging: Meta-analysis of 11 trials with cognitive data on 22,000 individuals
AU - Clarke, R.
AU - Bennett, D.A.
AU - Parish, S.E.
AU - Lewington, S.L.
AU - Skeaff, M.C.
AU - Eussen, S.J.P.M.
AU - Lewerin, C.
AU - Stott, D.J.
AU - Armitage, J.M.
AU - Hankey, Graeme J.
AU - Lonn, E.M.
AU - Spence, J.D.
AU - Galán, P.
AU - De Groot, L.C.
AU - Halsey, J.
AU - Dangour, A.D.
AU - Collins, R.E.
AU - Grodstein, F.N.
PY - 2014/8
Y1 - 2014/8
N2 - Background: Elevated plasma homocysteine is a risk factor for Alzheimer disease, but the relevance of homocysteine lowering to slow the rate of cognitive aging is uncertain. Objective: The aim was to assess the effects of treatment with B vitamins compared with placebo, when administered for several years, on composite domains of cognitive function, global cognitive function, and cognitive aging. Design: A meta-analysis was conducted by using data combined from 11 large trials in 22,000 participants. Domain-based z scores (for memory, speed, and executive function and a domain-composite score for global cognitive function) were available before and after treatment (mean duration: 2.3 y) in the 4 cognitive-domain trials (1340 individuals); Mini-Mental State Examination (MMSE)-type tests were available at the end of treatment (mean duration: 5 y) in the 7 global cognition trials (20,431 individuals). Results: The domain-composite and MMSE-type global cognitive function z scores both decreased with age (mean ± SE: -0.054 ± 0.004 and -0.036 ± 0.001/y, respectively). Allocation to B vitamins lowered homocysteine concentrations by 28% in the cognitive-domain trials but had no significant effects on the z score differences from baseline for individual domains or for global cognitive function (z score difference: 0.00; 95% CI: -0.05, 0.06). Likewise, allocation to B vitamins lowered homocysteine by 26% in the global cognition trials but also had no significant effect on end-treatment MMSE-type global cognitive function (z score difference: -0.01; 95% CI: -0.03, 0.02). Overall, the effect of a 25% reduction in homocysteine equated to 0.02 y (95% CI: -0.10, 0.13 y) of cognitive aging per year and excluded reductions of >1 mo per year of treatment. Conclusion: Homocysteine lowering by using B vitamins had no significant effect on individual cognitive domains or global cognitive function or on cognitive aging. © 2014 American Society for Nutrition.
AB - Background: Elevated plasma homocysteine is a risk factor for Alzheimer disease, but the relevance of homocysteine lowering to slow the rate of cognitive aging is uncertain. Objective: The aim was to assess the effects of treatment with B vitamins compared with placebo, when administered for several years, on composite domains of cognitive function, global cognitive function, and cognitive aging. Design: A meta-analysis was conducted by using data combined from 11 large trials in 22,000 participants. Domain-based z scores (for memory, speed, and executive function and a domain-composite score for global cognitive function) were available before and after treatment (mean duration: 2.3 y) in the 4 cognitive-domain trials (1340 individuals); Mini-Mental State Examination (MMSE)-type tests were available at the end of treatment (mean duration: 5 y) in the 7 global cognition trials (20,431 individuals). Results: The domain-composite and MMSE-type global cognitive function z scores both decreased with age (mean ± SE: -0.054 ± 0.004 and -0.036 ± 0.001/y, respectively). Allocation to B vitamins lowered homocysteine concentrations by 28% in the cognitive-domain trials but had no significant effects on the z score differences from baseline for individual domains or for global cognitive function (z score difference: 0.00; 95% CI: -0.05, 0.06). Likewise, allocation to B vitamins lowered homocysteine by 26% in the global cognition trials but also had no significant effect on end-treatment MMSE-type global cognitive function (z score difference: -0.01; 95% CI: -0.03, 0.02). Overall, the effect of a 25% reduction in homocysteine equated to 0.02 y (95% CI: -0.10, 0.13 y) of cognitive aging per year and excluded reductions of >1 mo per year of treatment. Conclusion: Homocysteine lowering by using B vitamins had no significant effect on individual cognitive domains or global cognitive function or on cognitive aging. © 2014 American Society for Nutrition.
U2 - 10.3945/ajcn.113.076349
DO - 10.3945/ajcn.113.076349
M3 - Article
C2 - 24965307
SN - 0002-9165
VL - 100
SP - 657
EP - 666
JO - American Journal of Clinical Nutrition
JF - American Journal of Clinical Nutrition
IS - 2
ER -