Effects of calcium supplementation on circulating osteocalcin and glycated haemoglobin in older women

J. R. Lewis, T. C. Brennan-Speranza, I. Levinger, E. Byrnes, E. M. Lim, L. C. Blekkenhorst, M. Sim, J. M. Hodgson, K. Zhu, W. H. Lim, L. A. Adams, R. L. Prince

Research output: Contribution to journalArticle

Abstract

Summary: One year of calcium supplementation in older women led to modest reductions in total osteocalcin and undercarboxylated osteocalcin (ucOC), with no changes in muscle or fat mass, or glycated haemoglobin. Future studies should explore whether treatments with more profound effects of suppressing ucOC may lead to impaired glycaemic control. Introduction: Total osteocalcin (TOC) is a marker of bone turnover, while its undercarboxylated form has beneficial effects on glucose metabolism in mice. This post hoc analysis of a randomised double-blind, placebo-controlled trial examined whether 1 year of calcium supplementation affected circulating TOC, undercarboxylated osteocalcin (ucOC) or glycated haemoglobin (HbA1c) in 1368 older community-dwelling women (mean age 75.2 ± 2.7 years). Methods: Women enrolled in the Calcium Intake Fracture Outcome Study trial (1998–2003) were supplemented with 1.2 g/d of elemental calcium (in the form of calcium carbonate) or placebo. Circulating TOC, ucOC and HbA1c was measured at 1 year (1999). Results: After 1 year of calcium supplementation, TOC and ucOC levels were 17% and 22% lower compared with placebo (mean 22.7 ± 9.1 vs. 27.3 ± 10.9 μg/L and 11.1 ± 4.9 vs. 13.0 ± 5.7 μg/L, both P < 0.001). Carboxylated osteocalcin/ucOC was 6% lower after calcium supplementation (P < 0.05). Despite this, no differences in HbA1c were observed (calcium, 5.2 ± 0.6 vs. placebo, 5.3 ± 0.8%; P = 0.08). Calcium supplementation did not affect BMI, whole body lean or fat mass. In exploratory analyses, total calcium (dietary and supplemental) was inversely related to TOC and ucOC, indicating calcium intake is an important dietary determinant of osteocalcin levels. Conclusion: One year of calcium supplementation in older women led to modest reductions in TOC and ucOC, with no changes in muscle or fat mass, or HbA1c. Future studies should explore whether treatments with more profound effects of suppressing ucOC may lead to impaired glycaemic control.

Original languageEnglish
JournalOsteoporosis International
DOIs
Publication statusPublished - 1 Jan 2019

Fingerprint

Osteocalcin
Glycosylated Hemoglobin A
Calcium
Placebos
Fats
Independent Living
Dietary Calcium
Muscles
Calcium Carbonate
Bone Remodeling

Cite this

@article{01df242fb3d04b1ca8904aeacbf7caf4,
title = "Effects of calcium supplementation on circulating osteocalcin and glycated haemoglobin in older women",
abstract = "Summary: One year of calcium supplementation in older women led to modest reductions in total osteocalcin and undercarboxylated osteocalcin (ucOC), with no changes in muscle or fat mass, or glycated haemoglobin. Future studies should explore whether treatments with more profound effects of suppressing ucOC may lead to impaired glycaemic control. Introduction: Total osteocalcin (TOC) is a marker of bone turnover, while its undercarboxylated form has beneficial effects on glucose metabolism in mice. This post hoc analysis of a randomised double-blind, placebo-controlled trial examined whether 1 year of calcium supplementation affected circulating TOC, undercarboxylated osteocalcin (ucOC) or glycated haemoglobin (HbA1c) in 1368 older community-dwelling women (mean age 75.2 ± 2.7 years). Methods: Women enrolled in the Calcium Intake Fracture Outcome Study trial (1998–2003) were supplemented with 1.2 g/d of elemental calcium (in the form of calcium carbonate) or placebo. Circulating TOC, ucOC and HbA1c was measured at 1 year (1999). Results: After 1 year of calcium supplementation, TOC and ucOC levels were 17{\%} and 22{\%} lower compared with placebo (mean 22.7 ± 9.1 vs. 27.3 ± 10.9 μg/L and 11.1 ± 4.9 vs. 13.0 ± 5.7 μg/L, both P < 0.001). Carboxylated osteocalcin/ucOC was 6{\%} lower after calcium supplementation (P < 0.05). Despite this, no differences in HbA1c were observed (calcium, 5.2 ± 0.6 vs. placebo, 5.3 ± 0.8{\%}; P = 0.08). Calcium supplementation did not affect BMI, whole body lean or fat mass. In exploratory analyses, total calcium (dietary and supplemental) was inversely related to TOC and ucOC, indicating calcium intake is an important dietary determinant of osteocalcin levels. Conclusion: One year of calcium supplementation in older women led to modest reductions in TOC and ucOC, with no changes in muscle or fat mass, or HbA1c. Future studies should explore whether treatments with more profound effects of suppressing ucOC may lead to impaired glycaemic control.",
keywords = "Bone, Diabetes, Lean mass, Osteocalcin, Vitamin K",
author = "Lewis, {J. R.} and Brennan-Speranza, {T. C.} and I. Levinger and E. Byrnes and Lim, {E. M.} and Blekkenhorst, {L. C.} and M. Sim and Hodgson, {J. M.} and K. Zhu and Lim, {W. H.} and Adams, {L. A.} and Prince, {R. L.}",
year = "2019",
month = "1",
day = "1",
doi = "10.1007/s00198-019-05087-3",
language = "English",
journal = "Osteoporosis International: with other metabolic bone diseases",
issn = "0937-941X",
publisher = "Springer",

}

TY - JOUR

T1 - Effects of calcium supplementation on circulating osteocalcin and glycated haemoglobin in older women

AU - Lewis, J. R.

AU - Brennan-Speranza, T. C.

AU - Levinger, I.

AU - Byrnes, E.

AU - Lim, E. M.

AU - Blekkenhorst, L. C.

AU - Sim, M.

AU - Hodgson, J. M.

AU - Zhu, K.

AU - Lim, W. H.

AU - Adams, L. A.

AU - Prince, R. L.

PY - 2019/1/1

Y1 - 2019/1/1

N2 - Summary: One year of calcium supplementation in older women led to modest reductions in total osteocalcin and undercarboxylated osteocalcin (ucOC), with no changes in muscle or fat mass, or glycated haemoglobin. Future studies should explore whether treatments with more profound effects of suppressing ucOC may lead to impaired glycaemic control. Introduction: Total osteocalcin (TOC) is a marker of bone turnover, while its undercarboxylated form has beneficial effects on glucose metabolism in mice. This post hoc analysis of a randomised double-blind, placebo-controlled trial examined whether 1 year of calcium supplementation affected circulating TOC, undercarboxylated osteocalcin (ucOC) or glycated haemoglobin (HbA1c) in 1368 older community-dwelling women (mean age 75.2 ± 2.7 years). Methods: Women enrolled in the Calcium Intake Fracture Outcome Study trial (1998–2003) were supplemented with 1.2 g/d of elemental calcium (in the form of calcium carbonate) or placebo. Circulating TOC, ucOC and HbA1c was measured at 1 year (1999). Results: After 1 year of calcium supplementation, TOC and ucOC levels were 17% and 22% lower compared with placebo (mean 22.7 ± 9.1 vs. 27.3 ± 10.9 μg/L and 11.1 ± 4.9 vs. 13.0 ± 5.7 μg/L, both P < 0.001). Carboxylated osteocalcin/ucOC was 6% lower after calcium supplementation (P < 0.05). Despite this, no differences in HbA1c were observed (calcium, 5.2 ± 0.6 vs. placebo, 5.3 ± 0.8%; P = 0.08). Calcium supplementation did not affect BMI, whole body lean or fat mass. In exploratory analyses, total calcium (dietary and supplemental) was inversely related to TOC and ucOC, indicating calcium intake is an important dietary determinant of osteocalcin levels. Conclusion: One year of calcium supplementation in older women led to modest reductions in TOC and ucOC, with no changes in muscle or fat mass, or HbA1c. Future studies should explore whether treatments with more profound effects of suppressing ucOC may lead to impaired glycaemic control.

AB - Summary: One year of calcium supplementation in older women led to modest reductions in total osteocalcin and undercarboxylated osteocalcin (ucOC), with no changes in muscle or fat mass, or glycated haemoglobin. Future studies should explore whether treatments with more profound effects of suppressing ucOC may lead to impaired glycaemic control. Introduction: Total osteocalcin (TOC) is a marker of bone turnover, while its undercarboxylated form has beneficial effects on glucose metabolism in mice. This post hoc analysis of a randomised double-blind, placebo-controlled trial examined whether 1 year of calcium supplementation affected circulating TOC, undercarboxylated osteocalcin (ucOC) or glycated haemoglobin (HbA1c) in 1368 older community-dwelling women (mean age 75.2 ± 2.7 years). Methods: Women enrolled in the Calcium Intake Fracture Outcome Study trial (1998–2003) were supplemented with 1.2 g/d of elemental calcium (in the form of calcium carbonate) or placebo. Circulating TOC, ucOC and HbA1c was measured at 1 year (1999). Results: After 1 year of calcium supplementation, TOC and ucOC levels were 17% and 22% lower compared with placebo (mean 22.7 ± 9.1 vs. 27.3 ± 10.9 μg/L and 11.1 ± 4.9 vs. 13.0 ± 5.7 μg/L, both P < 0.001). Carboxylated osteocalcin/ucOC was 6% lower after calcium supplementation (P < 0.05). Despite this, no differences in HbA1c were observed (calcium, 5.2 ± 0.6 vs. placebo, 5.3 ± 0.8%; P = 0.08). Calcium supplementation did not affect BMI, whole body lean or fat mass. In exploratory analyses, total calcium (dietary and supplemental) was inversely related to TOC and ucOC, indicating calcium intake is an important dietary determinant of osteocalcin levels. Conclusion: One year of calcium supplementation in older women led to modest reductions in TOC and ucOC, with no changes in muscle or fat mass, or HbA1c. Future studies should explore whether treatments with more profound effects of suppressing ucOC may lead to impaired glycaemic control.

KW - Bone

KW - Diabetes

KW - Lean mass

KW - Osteocalcin

KW - Vitamin K

UR - http://www.scopus.com/inward/record.url?scp=85069724136&partnerID=8YFLogxK

U2 - 10.1007/s00198-019-05087-3

DO - 10.1007/s00198-019-05087-3

M3 - Article

JO - Osteoporosis International: with other metabolic bone diseases

JF - Osteoporosis International: with other metabolic bone diseases

SN - 0937-941X

ER -