TY - JOUR
T1 - Effects of acid dissolution capacity on the propagation of an acid-dissolution front in carbonate rocks
AU - Zhao, Chongbin
AU - Hobbs, B. E.
AU - Ord, A.
PY - 2017/5/1
Y1 - 2017/5/1
N2 - Acid dissolution capability plays a considerable role in controlling the propagation of an acid-dissolution front in the carbonate rocks that are saturated by pore fluids. This capability can be represented by a dimensionless number, known as the acid dissolution capability number, by which we mean the quotient of the volume of an acid-dissolved carbonate rock divided by that of the acid itself. This paper aims primarily to investigate why and how the acid dissolution capacity can affect the behaviors of the acid-dissolution front propagation in the carbonate rocks that are saturated by pore fluids. If the acid dissolution capacity number is a nonzero finite number, as in a general case, then the computational simulation method needs to be employed to get numerical solutions for the acid-dissolution system. The relevant computational simulation results have demonstrated that: (1) with an increase in the value of the Zhao number (namely another dimensionless number), which is used to denote the dynamic characteristics of an acid-dissolution system, the acid-dissolution front becomes more unstable in the corresponding supercritical acid-dissolution system. (2) When the acid dissolution capacity number is small enough, the propagating speed of a planar acid-dissolution front in the corresponding subcritical acid-dissolution system is linearly dependent on the acid dissolution capacity number, indicating that the smaller the acid dissolution capacity, the slower the propagating speed of a planar acid-dissolution front in the corresponding subcritical acid-dissolution system. (3) With a decrease in the acid dissolution capacity number, the acid-dissolution front can exhibit more unstable behavior in the corresponding supercritical acid-dissolution system.
AB - Acid dissolution capability plays a considerable role in controlling the propagation of an acid-dissolution front in the carbonate rocks that are saturated by pore fluids. This capability can be represented by a dimensionless number, known as the acid dissolution capability number, by which we mean the quotient of the volume of an acid-dissolved carbonate rock divided by that of the acid itself. This paper aims primarily to investigate why and how the acid dissolution capacity can affect the behaviors of the acid-dissolution front propagation in the carbonate rocks that are saturated by pore fluids. If the acid dissolution capacity number is a nonzero finite number, as in a general case, then the computational simulation method needs to be employed to get numerical solutions for the acid-dissolution system. The relevant computational simulation results have demonstrated that: (1) with an increase in the value of the Zhao number (namely another dimensionless number), which is used to denote the dynamic characteristics of an acid-dissolution system, the acid-dissolution front becomes more unstable in the corresponding supercritical acid-dissolution system. (2) When the acid dissolution capacity number is small enough, the propagating speed of a planar acid-dissolution front in the corresponding subcritical acid-dissolution system is linearly dependent on the acid dissolution capacity number, indicating that the smaller the acid dissolution capacity, the slower the propagating speed of a planar acid-dissolution front in the corresponding subcritical acid-dissolution system. (3) With a decrease in the acid dissolution capacity number, the acid-dissolution front can exhibit more unstable behavior in the corresponding supercritical acid-dissolution system.
KW - Acid dissolution capacity
KW - Acidization
KW - Carbonate rocks
KW - Front propagation
KW - Numerical solutions
UR - http://www.scopus.com/inward/record.url?scp=85014004728&partnerID=8YFLogxK
U2 - 10.1016/j.cageo.2017.02.013
DO - 10.1016/j.cageo.2017.02.013
M3 - Article
AN - SCOPUS:85014004728
VL - 102
SP - 109
EP - 115
JO - Computers & Geosciences
JF - Computers & Geosciences
SN - 0098-3004
ER -