TY - JOUR
T1 - Effect of irradiation with argon ions on elastic scattering of spin-polarized electrons from W(110) surface
AU - Dhal, S.
AU - Chatterjee, Santiram
AU - Samarin, Sergey
AU - Williams, James
AU - Giebels, F.
AU - Gollisch, H.
AU - Feder, R.
PY - 2015/2
Y1 - 2015/2
N2 - © 2015 Taylor & Francis. The energy and azimuthal angle dependencies of the asymmetry of spin-polarized low-energy electrons ((00) beam) elastically scattered from a W(110) surface, have been studied before and after irradiated with slow Ar+ ions with energies of 200 eV, 500 eV and 1 keV at a fluence of 5 × 1015 ions/cm2. The energy dependence of the scattered electron asymmetries and intensities (for a fixed azimuthal angle of 55°, which is determined by the angle between the normal to the scattering plane and the [] direction in the surface of the W(110) crystal) and the azimuthal angle dependence of the asymmetry for two different incident electron energies of 14 eV and 23 eV showed a significant change after irradiation. The low-energy ion irradiation influenced the spin-polarized electron scattering more than the higher energy ions. The reason for the change of spin-dependent electron scattering is a quenching of coherent elastic multiple scattering, mainly due to lattice defects induced by implanted ions. Thus, these modifications demonstrate a technological way to construct spin-active interface with required properties. The agreement between experimental results and theoretical ones with and without multiple scattering provides a consistent explanation of the observations.
AB - © 2015 Taylor & Francis. The energy and azimuthal angle dependencies of the asymmetry of spin-polarized low-energy electrons ((00) beam) elastically scattered from a W(110) surface, have been studied before and after irradiated with slow Ar+ ions with energies of 200 eV, 500 eV and 1 keV at a fluence of 5 × 1015 ions/cm2. The energy dependence of the scattered electron asymmetries and intensities (for a fixed azimuthal angle of 55°, which is determined by the angle between the normal to the scattering plane and the [] direction in the surface of the W(110) crystal) and the azimuthal angle dependence of the asymmetry for two different incident electron energies of 14 eV and 23 eV showed a significant change after irradiation. The low-energy ion irradiation influenced the spin-polarized electron scattering more than the higher energy ions. The reason for the change of spin-dependent electron scattering is a quenching of coherent elastic multiple scattering, mainly due to lattice defects induced by implanted ions. Thus, these modifications demonstrate a technological way to construct spin-active interface with required properties. The agreement between experimental results and theoretical ones with and without multiple scattering provides a consistent explanation of the observations.
U2 - 10.1080/10420150.2015.1010168
DO - 10.1080/10420150.2015.1010168
M3 - Article
SN - 1042-0150
VL - 170
SP - 144
EP - 151
JO - Radiation Effects and Defects in Solids
JF - Radiation Effects and Defects in Solids
IS - 2
ER -