Early earth geodynamics: cross examining the geological testimony

Research output: Contribution to journalArticlepeer-review

15 Citations (Scopus)


Many studies link the presence of continents on Earth to the operation of plate tectonics. Radiogenic isotope data have, however, long consigned the bulk of crust generation and preservation to the murky realm of the Precambrian Earth, where the prevailing geodynamic systems are highly uncertain due to the sparse and complex nature of the geological record of these early eons. The purpose of this paper is to examine the nature of this geological record, considering the biases and artefacts that may undermine its fidelity, and to assess what are the most robust lines of evidence from which meaningful geodynamic inferences can be drawn. This is pursued with reference to Hadean detrital zircons, Archean gneiss complexes and Archean granite-greenstone terranes, and by considering isotopic proxies of crust-mantle interaction. The evidence reinforces long held views that the formation of some of the oldest continental nuclei involved a distinctive mode of planetary geodynamics that rests uneasily within definitions of modern style plate tectonics. A detailed interrogation of the oldest rocks, integrating multi-scale information from the best preserved whole-rock and mineral archives, and emphasizing careful selection at the sampling and analytical stages, will lead to the most robust input data for petrological and thermodynamic models of early Earth processes.This article is part of a discussion meeting issue 'Earth dynamics and the development of plate tectonics'.

Original languageEnglish
Article number20180169
JournalPhilosophical transactions. Series A, Mathematical, physical, and engineering sciences
Issue number2132
Publication statusPublished - 13 Nov 2018


Dive into the research topics of 'Early earth geodynamics: cross examining the geological testimony'. Together they form a unique fingerprint.

Cite this