TY - JOUR
T1 - Dynamical evolution of globular cluster systems in clusters of galaxies - I. The case of NGC 1404 in the Fornax cluster
AU - Bekki, K.
AU - Forbes, Duncan A.
AU - Beasley, Michael A.
AU - Couch, W. J.
PY - 2003
Y1 - 2003
N2 - We investigate, via numerical simulations, the tidal stripping and accretion of globular clusters (GCs). In particular, we focus on creating models that simulate the situation for the GC systems of NGC 1404 and 1399 in the Fornax cluster, which have poor (specific frequency SN~ 2) and rich (SN~ 10) GC systems, respectively. We initially assign NGC 1404 in our simulation a typical SN (~5) for cluster ellipticals, and find that its GC system can only be reduced through stripping to the presently observed value, if its orbit is highly eccentric (with orbital eccentricity of >0.5) and if the initial scalelength of the GCs system is about twice as large as the effective radius of NGC 1404 itself. These stripped GCs can be said to have formed a `tidal stream' of intracluster globular clusters (ICGCs) orbiting the centre of the Fornax cluster (many of which would be assigned to NGC 1399 in an imaging study). The physical properties of these GCs (e.g. number, radial distribution and kinematics) depend on the orbit and initial distribution of GCs in NGC 1404. Our simulations also predict a trend for SN to rise with increasing clustercentric distance - a trend for which there is some observational support in the Fornax cluster. We demonstrate that, because the kinematical properties of ICGCs formed by tidal stripping in the cluster tidal field depend strongly on the orbits of their previous host galaxies, observations of ICGC kinematics provides a new method for probing galaxy dynamics in a cluster.
AB - We investigate, via numerical simulations, the tidal stripping and accretion of globular clusters (GCs). In particular, we focus on creating models that simulate the situation for the GC systems of NGC 1404 and 1399 in the Fornax cluster, which have poor (specific frequency SN~ 2) and rich (SN~ 10) GC systems, respectively. We initially assign NGC 1404 in our simulation a typical SN (~5) for cluster ellipticals, and find that its GC system can only be reduced through stripping to the presently observed value, if its orbit is highly eccentric (with orbital eccentricity of >0.5) and if the initial scalelength of the GCs system is about twice as large as the effective radius of NGC 1404 itself. These stripped GCs can be said to have formed a `tidal stream' of intracluster globular clusters (ICGCs) orbiting the centre of the Fornax cluster (many of which would be assigned to NGC 1399 in an imaging study). The physical properties of these GCs (e.g. number, radial distribution and kinematics) depend on the orbit and initial distribution of GCs in NGC 1404. Our simulations also predict a trend for SN to rise with increasing clustercentric distance - a trend for which there is some observational support in the Fornax cluster. We demonstrate that, because the kinematical properties of ICGCs formed by tidal stripping in the cluster tidal field depend strongly on the orbits of their previous host galaxies, observations of ICGC kinematics provides a new method for probing galaxy dynamics in a cluster.
KW - globular clusters: general galaxies: clusters: individual: Fornax galaxies: elliptical and lenticular cD galaxies: formation galaxies: interactions galaxies: star clusters Astrophysics
U2 - 10.1046/j.1365-8711.2003.06925.x
DO - 10.1046/j.1365-8711.2003.06925.x
M3 - Article
SN - 1365-2966
VL - 344
SP - 1334
EP - 1344
JO - Monthly Notices of the Royal Astronomical Society
JF - Monthly Notices of the Royal Astronomical Society
ER -