Dynamic propagation criteria for catastrophic failure in planar landslides

Research output: Contribution to journalArticle

10 Citations (Scopus)

Abstract

Quantitative assessment of the risk of submarine landslides is an essential part of the design process for offshore oil and gas developments in deep water, beyond the continental shelf. Landslides may be triggered by a reduction in shear strength of subsea sediments over a given zone, caused for example by seismic activity. Simple criteria are then needed to identify critical conditions whereby the zone of weakness could grow catastrophically to cause a landslide. A number of such criteria have been developed over the last decade, based either on ideas drawn from fracture mechanics, or considering the equilibrium of the initial weakened zone and adjacent process zones of gradually softening material. Accounting for the history of the weak zone initiation is critical for derivation of reliable propagation criteria, in particular considering dynamic effects arising from accumulating kinetic energy of the failing material, which will allow the failure to propagate from a smaller initial zone of weakened sediments. Criteria are developed here for planar conditions, taking full account of such dynamic effects, which are shown to be capable of reducing the critical length of the softened zone by 20% or more compared with criteria based on static conditions. A numerical approach is used to solve the governing dynamic equations for the sliding material, the results from which justify assumptions that allow analytical criteria to be developed for the case where the initial softening occurs instantaneously. The effect of more gradual softening is also explored.

Original languageEnglish
Pages (from-to)2312-2338
Number of pages27
JournalInternational Journal for Numerical and Analytical Methods in Geomechanics
Volume40
Issue number17
Early online date28 Apr 2016
DOIs
Publication statusPublished - 10 Dec 2016

Fingerprint Dive into the research topics of 'Dynamic propagation criteria for catastrophic failure in planar landslides'. Together they form a unique fingerprint.

  • Cite this