TY - JOUR
T1 - Dynamic Bezier curves for variable rate-distortion
AU - Sohel, Ferdous
AU - Karmakr, G.C.
AU - Dooley, L.S.
PY - 2008
Y1 - 2008
N2 - Bezier curves (BC) are important tools in a wide range of diverse and challenging applications, from computer-aided design to generic object shape descriptors. A major constraint of the classical BC is that only global information concerning control points (CP) is considered, consequently there may be a sizeable gap between the BC and its control polygon (CtrlPoly), leading to a large distortion in shape representation. While BC variants like degree elevation, composite BC and refinement and subdivision narrow this gap, they increase the number of CP and thereby both the required bit-rate and computational complexity. In addition, while quasi-Bezier curves (QBC) close the gap without increasing the number of CP, they reduce the underlying distortion by only a fixed amount. This paper presents a novel contribution to BC theory, with the introduction of a dynamic Bezier curve (DBC) model, which embeds variable localised CP information into the inherently global Bezier framework, by strategically moving BC points towards the CtrlPoly. A shifting parameter (SP) is defined that enables curves lying within the region between the BC and CtrlPoly to be generated, with no commensurate increase in CP. DBC provides a flexible rate-distortion (RD) criterion for shape coding applications, with a theoretical model for determining the optimal SP value for any admissible distortion being formulated. Crucially DBC retains core properties of the classical BC, including the convex hull and affine invariance, and can be seamlessly integrated into both the vertex-based shape coding and shape descriptor frameworks to improve their RD performance. DBC has been empirically tested upon a number of natural and synthetically shaped objects, with qualitative and quantitative results confirming its consistently superior shape approximation performance, compared with the classical BC, QBC and other established BC-based shape descriptor techniques.
AB - Bezier curves (BC) are important tools in a wide range of diverse and challenging applications, from computer-aided design to generic object shape descriptors. A major constraint of the classical BC is that only global information concerning control points (CP) is considered, consequently there may be a sizeable gap between the BC and its control polygon (CtrlPoly), leading to a large distortion in shape representation. While BC variants like degree elevation, composite BC and refinement and subdivision narrow this gap, they increase the number of CP and thereby both the required bit-rate and computational complexity. In addition, while quasi-Bezier curves (QBC) close the gap without increasing the number of CP, they reduce the underlying distortion by only a fixed amount. This paper presents a novel contribution to BC theory, with the introduction of a dynamic Bezier curve (DBC) model, which embeds variable localised CP information into the inherently global Bezier framework, by strategically moving BC points towards the CtrlPoly. A shifting parameter (SP) is defined that enables curves lying within the region between the BC and CtrlPoly to be generated, with no commensurate increase in CP. DBC provides a flexible rate-distortion (RD) criterion for shape coding applications, with a theoretical model for determining the optimal SP value for any admissible distortion being formulated. Crucially DBC retains core properties of the classical BC, including the convex hull and affine invariance, and can be seamlessly integrated into both the vertex-based shape coding and shape descriptor frameworks to improve their RD performance. DBC has been empirically tested upon a number of natural and synthetically shaped objects, with qualitative and quantitative results confirming its consistently superior shape approximation performance, compared with the classical BC, QBC and other established BC-based shape descriptor techniques.
U2 - 10.1016/j.patcog.2008.03.006
DO - 10.1016/j.patcog.2008.03.006
M3 - Article
SN - 0031-3203
VL - 41
SP - 3153
EP - 3165
JO - Pattern Recognition
JF - Pattern Recognition
IS - 10
ER -