Dual mode cooling house in the warm humid tropics

Research output: Contribution to journalArticlepeer-review

8 Citations (Scopus)


Passive techniques as an alternative to artificial cooling can bring important energy, environmental, financial, operational and qualitative benefits. However, regions such as the wet tropics can reach high levels of thermal stress in which passive means alone are unable to provide appropriate thermal comfort standards for some parts of the year. Despite a great accumulation of empirical information on the passive performance of houses for either free-running or conditioned modes, very little work has been done on the thermal performance of buildings that can operate with a mixed-running strategy in warm-humid climates. Buildings with such design features are able to balance the needs for comfort, privacy, and energy efficiency during different periods of the year. As free-running and conditioned modes are believed by many to be 'opposite' approaches, and have been presented as separate strategies, this paper demonstrates that not all parameters are directly opposite and a possible dual-mode integrated operation can be used for warm-humid locations for maximum comfort and minimum energy requirements. For this purpose, simulation runs using ESP-R (University of Strathclyde, ESRU, UK) were based on the climate data of Darwin (Australia) and on the ventilation styles of the house: free running and conditioned. Design features applicable to both, i.e. for a dual mode operation could be identified and the differences between conditioned and free running were demonstrated and proved not to be totally conflicting and therefore suitable for a dual mode operation. Different daily usage profiles (five use patterns were defined), and zoning of sleeping and living areas are presented. The dual mode use patterns compared to the base case house, for all the user possibilities, had improved performances of 17-52%, when compared to the free-running mode and 66-98% when compared to the conditioned mode. Simulation runs using other warm-humid climates (Miami, USA; Sao Luis, Brazil; Kuala Lumpur, Malaysia) were also conducted and compared to the results found for Darwin.

Original languageEnglish
Pages (from-to)43-57
Number of pages15
JournalSolar Energy
Issue number1
Publication statusPublished - 23 Nov 2002


Dive into the research topics of 'Dual mode cooling house in the warm humid tropics'. Together they form a unique fingerprint.

Cite this