TY - JOUR
T1 - Dual control of antitumor CD8 T cells through the programmed death-1/programmed death-ligand 1 pathway and immunosuppressive CD4 T cells: regulation and counterregulation
AU - Currie, Andrew
AU - Prosser, Amy
AU - Mcdonnell, Alison
AU - Cleaver, Amanda
AU - Robinson, Bruce
AU - Freeman, G.J.
AU - Van Der Most, Robbert
PY - 2009
Y1 - 2009
N2 - Tumors have evolved multiple mechanisms to evade immune destruction. One of these is expression of T cell inhibitory ligands such as programmed death-ligand 1 (PD-L1; B7-H1). In this study, we show that PD-L1 is highly expressed on mesothelioma tumor cells and within the tumor stroma. However, PD-L1 blockade only marginally affected tumor growth and was associated with the emergence of activated programmed death-1+ ICOS+ CD4 T cells in tumor-draining lymph nodes, whereas few activated CD8 T cells were present. Full activation of antitumor CD8 T cells, characterized as programmed death-1+ ICOS+ Ki-67+ and displaying CTL activity, was only observed when CD4 T cells were depleted, suggesting that a population of suppressive CD4 T cells exists. ICOS+ foxp3+ regulatory T cells were found to be regulated through PD-L1, identifying one potentially suppressive CD4 T cell population. Thus, PD-L1 blockade activates antitumor CD8 T cell most potently in the absence of CD4 T cells. These findings have implications for the development of PD-L1-based therapies.
AB - Tumors have evolved multiple mechanisms to evade immune destruction. One of these is expression of T cell inhibitory ligands such as programmed death-ligand 1 (PD-L1; B7-H1). In this study, we show that PD-L1 is highly expressed on mesothelioma tumor cells and within the tumor stroma. However, PD-L1 blockade only marginally affected tumor growth and was associated with the emergence of activated programmed death-1+ ICOS+ CD4 T cells in tumor-draining lymph nodes, whereas few activated CD8 T cells were present. Full activation of antitumor CD8 T cells, characterized as programmed death-1+ ICOS+ Ki-67+ and displaying CTL activity, was only observed when CD4 T cells were depleted, suggesting that a population of suppressive CD4 T cells exists. ICOS+ foxp3+ regulatory T cells were found to be regulated through PD-L1, identifying one potentially suppressive CD4 T cell population. Thus, PD-L1 blockade activates antitumor CD8 T cell most potently in the absence of CD4 T cells. These findings have implications for the development of PD-L1-based therapies.
U2 - 10.4049/jimmunol.0901060
DO - 10.4049/jimmunol.0901060
M3 - Article
C2 - 20007574
VL - 183
SP - 7898
EP - 7908
JO - The Journal of Immunology
JF - The Journal of Immunology
SN - 0022-1767
IS - 12
ER -