TY - JOUR
T1 - Diversity of virulence factors associated with West Australian methicillin-sensitive staphylococcus aureus isolates of human origin
AU - Waryah, Charlene Babra
AU - Gogoi-Tiwari, Jully
AU - Wells, Kelsi
AU - Eto, Karina Yui
AU - Masoumi, Elnaz
AU - Costantino, Paul
AU - Kotiw, Michael
AU - Mukkur, Trilochan
PY - 2016/1/1
Y1 - 2016/1/1
N2 - An extensive array of virulence factors associated with S. aureus has contributed significantly to its success as a major nosocomial pathogen in hospitals and community causing variety of infections in affected patients. Virulence factors include immune evading capsular polysaccharides, poly-N-acetyl glucosamine, and teichoic acid in addition to damaging toxins including hemolytic toxins, enterotoxins, cytotoxins, exfoliative toxin, and microbial surface components recognizing adhesive matrix molecules (MSCRAMM). In this investigation, 31 West Australian S. aureus isolates of human origin and 6 controls were analyzed for relative distribution of virulence-associated genes using PCR and/or an immunoassay kit and MSCRAMM by PCR-based typing. Genes encoding MSCRAMM, namely, Spa, ClfA, ClfB, SdrE, SdrD, IsdA, and IsdB, were detected in >90% of isolates. Gene encoding α-toxin was detected in >90% of isolates whereas genes encoding β-toxin and SEG were detectable in 50-60% of isolates. Genes encoding toxin proteins, namely, SEA, SEB, SEC, SED, SEE, SEH, SEI, SEJ, TSST, PVL, ETA, and ETB, were detectable in >50% of isolates. Use of RAPD-PCR for determining the virulence factor-based genetic relatedness among the isolates revealed five cluster groups confirming genetic diversity among the MSSA isolates, with the greatest majority of the clinical S. aureus (84%) isolates clustering in group IIIa.
AB - An extensive array of virulence factors associated with S. aureus has contributed significantly to its success as a major nosocomial pathogen in hospitals and community causing variety of infections in affected patients. Virulence factors include immune evading capsular polysaccharides, poly-N-acetyl glucosamine, and teichoic acid in addition to damaging toxins including hemolytic toxins, enterotoxins, cytotoxins, exfoliative toxin, and microbial surface components recognizing adhesive matrix molecules (MSCRAMM). In this investigation, 31 West Australian S. aureus isolates of human origin and 6 controls were analyzed for relative distribution of virulence-associated genes using PCR and/or an immunoassay kit and MSCRAMM by PCR-based typing. Genes encoding MSCRAMM, namely, Spa, ClfA, ClfB, SdrE, SdrD, IsdA, and IsdB, were detected in >90% of isolates. Gene encoding α-toxin was detected in >90% of isolates whereas genes encoding β-toxin and SEG were detectable in 50-60% of isolates. Genes encoding toxin proteins, namely, SEA, SEB, SEC, SED, SEE, SEH, SEI, SEJ, TSST, PVL, ETA, and ETB, were detectable in >50% of isolates. Use of RAPD-PCR for determining the virulence factor-based genetic relatedness among the isolates revealed five cluster groups confirming genetic diversity among the MSSA isolates, with the greatest majority of the clinical S. aureus (84%) isolates clustering in group IIIa.
UR - http://www.scopus.com/inward/record.url?scp=84973338623&partnerID=8YFLogxK
U2 - 10.1155/2016/8651918
DO - 10.1155/2016/8651918
M3 - Article
C2 - 27247944
AN - SCOPUS:84973338623
SN - 2314-6133
VL - 2016
JO - BioMed Research International
JF - BioMed Research International
M1 - 8651918
ER -