TY - JOUR
T1 - Distribution of porphyry deposits in the Eurasian continent and their corresponding tectonic settings
AU - Mao, J.
AU - Pirajno, Franco
AU - Lehmann, B.
AU - Luo, M.
AU - Berzina, A.P.
PY - 2014
Y1 - 2014
N2 - In the Eurasian continent there are three huge metallogenic belts of Cu and Mo porphyry deposits, comprising the Paleozoic Central Asian Ore Belt in the north, the Tethyan Eurasian Ore Belt of Jurassic to Cenozoic age in the southwest, and the East Margin Ore Belt of the Eurasian Continent of Jurassic to Cretaceous age in the east. The latter is considered to be part of the vast Circum-Pacific ore belt. Some of the main features of the spatial-temporal distribution of Cu and Mo porphyry systems and related geodynamic processes of the three metallogenic belts are described. In particular, the key role of post-subduction - related porphyry ore systems is emphasized, comprising collisional and post-collisional Cu-Mo porphyry deposits during the geological history of the Eurasian continent. The recurrent feature of these ore systems and related felsic rocks is their derivation from partial melting of stagnant or residual oceanic slabs, and mixing with a variable amount of crustal material during magma ascent to shallower levels. © 2013 .
AB - In the Eurasian continent there are three huge metallogenic belts of Cu and Mo porphyry deposits, comprising the Paleozoic Central Asian Ore Belt in the north, the Tethyan Eurasian Ore Belt of Jurassic to Cenozoic age in the southwest, and the East Margin Ore Belt of the Eurasian Continent of Jurassic to Cretaceous age in the east. The latter is considered to be part of the vast Circum-Pacific ore belt. Some of the main features of the spatial-temporal distribution of Cu and Mo porphyry systems and related geodynamic processes of the three metallogenic belts are described. In particular, the key role of post-subduction - related porphyry ore systems is emphasized, comprising collisional and post-collisional Cu-Mo porphyry deposits during the geological history of the Eurasian continent. The recurrent feature of these ore systems and related felsic rocks is their derivation from partial melting of stagnant or residual oceanic slabs, and mixing with a variable amount of crustal material during magma ascent to shallower levels. © 2013 .
U2 - 10.1016/j.jseaes.2013.09.002
DO - 10.1016/j.jseaes.2013.09.002
M3 - Article
VL - 79
SP - 576
EP - 584
JO - Journal of Asian Earth Sciences
JF - Journal of Asian Earth Sciences
SN - 1367-9120
IS - Part B
ER -