Dissolution of multi-component LNAPL gasolines: The effects of weathering and composition

G. Lekmine, T.P. Bastow, Colin Johnston, Greg Davis

Research output: Contribution to journalArticlepeer-review

32 Citations (Scopus)

Abstract

The composition of light non-aqueous phase liquid (LNAPL) gasoline and other petroleum products changes profoundly over their life once released into aquifers. However limited attention has been given to how such changes affect key parameters such as the activity coefficients which control partitioning of components of petroleum fuel into groundwater and are used to predict long-term risk from fuel releases. Laboratory experiments were conducted on a range of fresh, weathered and synthetic gasoline mixtures designed to mimic the expected changes in composition in an aquifer. Weathered gasoline created under controlled evaporation and water washing, and naturally weathered gasoline, were investigated. Equilibrium concentrations in water and molar fractions in the gasoline mixtures were compared with equilibrium concentrations predicted by Raoult's law assuming ideal behaviour of the solutions. The experiments carried out allowed the relative sensitivity of the activity coefficients of key risk drivers such as benzene, toluene, ethylbenzene and xylene (BTEX) compounds to be quantified with respect to the presence of other types of compounds and where the source LNAPL had undergone different types of weathering. Results differed for the mixtures examined but in some cases higher than predicted dissolved equilibrium concentrations showed non-ideal behaviour for toluene, benzene and xylenes. Comparison of the activity coefficients showed that the naturally weathered gasoline and a 50% evaporated unleaded gasoline present a similar range of values varying between 1.0 and 1.2, suggesting close to ideal partitioning between the LNAPL and water. The fresh and water-washed gasoline had higher values for the activity coefficient, from 1.2 to 1.4, indicating non-ideal partitioning. Results from synthetic mixtures demonstrated that these differences could be due to the different molar fractions of the nC5 and nC6 aliphatic hydrocarbons acting on the molecular interactions, while differences in molar volumes seemed to have less of an influence on ideality. © 2014 Elsevier B.V.
Original languageEnglish
Pages (from-to)1-11
JournalJournal of Contaminant Hydrology
Volume160
DOIs
Publication statusPublished - 2014

Fingerprint

Dive into the research topics of 'Dissolution of multi-component LNAPL gasolines: The effects of weathering and composition'. Together they form a unique fingerprint.

Cite this