Projects per year
Abstract
The standard model axion seesaw Higgs portal inflation (SMASH) model is a well-motivated, self-contained description of particle physics that predicts axion dark matter particles to exist within the mass range of 50 to 200 micro-electron volts. Scanning these masses requires an axion haloscope to operate under a constant magnetic field between 12 and 48 gigahertz. The ORGAN (Oscillating Resonant Group AxioN) experiment (in Perth, Australia) is a microwave cavity axion haloscope that aims to search the majority of the mass range predicted by the SMASH model. Our initial phase 1a scan sets an upper limit on the coupling of axions to two photons of gaγ γ ≤ 3 × 10-12 per giga-electron volts over the mass range of 63.2 to 67.1 micro-electron volts with 95% confidence interval. This highly sensitive result is sufficient to exclude the well-motivated axion-like particle cogenesis model for dark matter in the searched region.
Original language | English |
---|---|
Article number | abq3765 |
Journal | Science Advances |
Volume | 8 |
Issue number | 27 |
DOIs | |
Publication status | Published - Jul 2022 |
Fingerprint
Dive into the research topics of 'Direct search for dark matter axions excluding ALP cogenesis in the 63- to 67-μeV range with the ORGAN experiment'. Together they form a unique fingerprint.-
Centre of Excellence for Dark Matter Particle Physics
Barberio, E. (Investigator 01), Williams, A. (Investigator 02), Bell, N. (Investigator 03), Stuchbery, A. (Investigator 04), Tobar, M. (Investigator 05), Boehm, C. (Investigator 06) & Wallner, A. (Investigator 07)
ARC Australian Research Council
1/01/20 → 31/12/26
Project: Research
-
Wideband Tuneable Low Phase Noise Oscillators for 5G
Tobar, M. (Investigator 01), Goryachev, M. (Investigator 02) & Ivanov, E. (Investigator 03)
ARC Centre of Excellence for Engineered Quantum Systems
1/01/21 → 31/12/21
Project: Research