Differentiation of morphotic elements in human blood using optical coherence tomography and a microfluidic setup

Paweł Ossowski, Anna Raiter-Smiljanic, Anna Szkulmowska, Danuta Bukowska, Małgorzata Wiese, Ladislav Derzsi, Andrzej Eljaszewicz, Piotr Garstecki, Maciej Wojtkowski

Research output: Contribution to journalArticlepeer-review

13 Citations (Scopus)

Abstract

We demonstrate a novel optical method for the detection and differentiation between erythrocytes and leukocytes that uses amplitude and phase information provided by optical coherence tomography (OCT). Biological cells can introduce significant phase modulation with substantial scattering anisotropy and dominant forward-scattered light. Such physical properties may favor the use of a trans-illumination imaging technique. However, an epi-illumination mode may be more practical and robust in many applications. This study describes a new way of measuring the phase modulation introduced by flowing microobjects. The novel part of this invention is that it uses the backscattered signal from the substrate located below the flowing/moving objects. The identification of cells is based on phase-sensitive OCT signals. To differentiate single cells, a custom-designed microfluidic device with a highly scattering substrate is introduced. The microchannels are molded in polydimethylsiloxane (PDMS) mixed with titanium dioxide (TiO2) to ensure high scattering properties. The statistical parameters of the measured signal depend on the cells' features, such as their size, shape, and internal structure.

Original languageEnglish
Pages (from-to)27724-27738
Number of pages15
JournalOptics Express
Volume23
Issue number21
DOIs
Publication statusPublished - 19 Oct 2015
Externally publishedYes

Fingerprint

Dive into the research topics of 'Differentiation of morphotic elements in human blood using optical coherence tomography and a microfluidic setup'. Together they form a unique fingerprint.

Cite this