Abstract
Purpose of review Dyslipidemia is a powerful risk factor for cardiovascular disease (CVD). Dietary fatty acid composition regulates lipids and lipoprotein metabolism and may confer CVD benefit. This review updates understanding of the effect of dietary fatty acids on lipoprotein metabolism in humans. Recent findings High dietary fish-derived n-3 polyunsaturated fatty acid (PUFA) consumption diminished hepatic triglyceriderich lipoprotein (TRL) secretion and enhanced TRL to LDL conversion. n-3 PUFA also decreased TRL-apoB-48 concentration by decreasing TRL-apoB-48 secretion. High n-6 PUFA intake decreased liver fat, and plasma proprotein convertase subtilisin/kexin type 9, triglycerides, total-cholesterol and LDL-cholesterol concentrations. Intake of saturated fatty acids with increased palmitic acid at the sn-2 position was associated with decreased postprandial lipemia, which might be due to decreased triglyceride absorption. Replacing carbohydrate with monounsaturated fatty acids increased TRL catabolism. Ruminant trans-fatty acid decreased HDL cholesterol, but the mechanisms are unknown. A new role for APOE genotype in regulating lipid responses was also described. Summary The major advances in understanding the effect of dietary fatty acids on lipoprotein metabolism have focused on n-3 PUFA. This knowledge provides insights into the importance of regulating lipoprotein metabolism as a mode to improve plasma lipids and potential CVD risk. Further studies are required to better understand the cardiometabolic effects of other dietary fatty acids. © 2013 Wolters Kluwer Health | Lippincott Williams amp; Wilkins.
Original language | English |
---|---|
Pages (from-to) | 192-197 |
Journal | Current Opinion in Lipidology |
Volume | 24 |
Issue number | 3 |
DOIs | |
Publication status | Published - 2013 |