DFraud3: Multi-Component Fraud Detection free of Cold-start

Research output: Contribution to journalArticle


Fraud review detection is a hot research topic in recent years. The Cold-start is a particularly new but significant problem referring to the failure of a detection system to recognize the authenticity of a new user. State-of-the-art solutions employ a translational knowledge graph embedding approach (TransE) to model the interaction of the components of a review system. However, these approaches suffer from the limitation of TransE in handling N-1 relations and the narrow scope of a single classification task, i.e., detecting fraudsters only. In this paper, we model a review system as a Heterogeneous Information Network (HIN) which enables a unique representation to every component and performs graph inductive learning on the review data through aggregating features of nearby nodes. HIN with graph induction helps to address the camouflage issue (fraudsters with genuine reviews) which has shown to be more severe when it is coupled with cold-start, i.e., new fraudsters with genuine first reviews. In this research, instead of focusing only on one component, detecting either fraud reviews or fraud users (fraudsters), vector representations are learned for each component, enabling multi-component classification. In other words, we can detect fraud reviews, fraudsters, and fraud-targeted items, thus the name of our approach DFraud3. DFraud3 demonstrates a significant accuracy increase of 13% over the state of the art on Yelp.

Original languageEnglish
Pages (from-to)3456-3469
JournalIEEE Transactions on Information Forensics and Security
Publication statusPublished - 19 May 2021


Dive into the research topics of 'DFraud3: Multi-Component Fraud Detection free of Cold-start'. Together they form a unique fingerprint.

Cite this