Developing food waste biorefinery: using optimized inclined thin layer pond to overcome constraints of microalgal biomass production on food waste digestate

David Chuka-ogwude, Bede S. Mickan, James C. Ogbonna, Navid R. Moheimani

Research output: Contribution to journalArticlepeer-review

7 Citations (Scopus)

Abstract

Diversion of food waste from landfill through anaerobic digestion is a sustainable form of energy production (biogas) and the waste effluent (digestate) can be utilised as nutrient supply for microalgae cultivation. However, digestate has very high nutrient concentrations and is highly turbid, making it difficult to utilize as a nutrient source with conventional microalgae cultivation systems. Here we compared the efficiencies of a conventional open raceway pond (ORWP) and an improved inclined thin layer photobioreactor (ITLP) for the utilization and treatment of food waste derived digestate by Chlorella sp. The ITLP improved on volumetric and areal productivities by 17 and 3 times over the ORWP, with values of 0.563 and 31.916 g m (-2) day (-1) respectively. Areal nutrient removal via microalgae biomass were 2359.759 +/- 64.75 and 260.815 +/- 7.16 mg m (-2) day (-1) for nitrogen and phosphorous respectively in the ITLP, which are 2.8 times higher than obtained in the ORWP. The ITLP's superiority stems from its ability to support a much higher average biomass yield of 6.807 g L (-1), which was 7 times higher than in the ORWP. Mean irradiance in-situ was higher in the ITLP, irradiance distribution and utilization by the culture in the ITLP was 44% more efficient than in the ORWP. Our results indicate that the ITLP is a far more productive system than conventional raceway ponds. This demonstrates that integration of ITLP microalgae cultivation using digestate has the potential to make digestate management yield net benefit in food waste biorefinery settings.
Original languageEnglish
Pages (from-to)2917-2928
Number of pages12
JournalJournal of Applied Phycology
Volume34
Issue number6
Early online date3 Sept 2022
DOIs
Publication statusPublished - Dec 2022

Fingerprint

Dive into the research topics of 'Developing food waste biorefinery: using optimized inclined thin layer pond to overcome constraints of microalgal biomass production on food waste digestate'. Together they form a unique fingerprint.

Cite this