Abstract
There has been a growing realisation that school science curricula do not adequately reflect the revolutionary changes in our scientific understanding of the 20th century. This discrepancy between current school education and our modern scientific understanding has led to calls for the modernisation of the science curriculum. Although there have been attempts to introduce topics of Einsteinian physics (i.e. quantum physics and relativity) to school education, often at the secondary level, we still lack a seamless curriculum in which modern science concepts are gradually introduced in primary and middle schools. Guided by the Model of Educational Reconstruction and following a mixed-methods research design, the Einstein-First project aims to address this gap. Einstein-First has developed and implemented an Einsteinian curriculum from Years 3-10 (students aged 7-16) that resolves the disconnect between science in schools and modern scientific understanding. This paper presents the concepts and rationale for the Einstein-First learning approach, as well as a summary of learning outcomes in six Australian schools with 315 students across Years 3-10. Our generally positive findings lay the foundation for informed curriculum development and school education that provides all students with awareness and appreciation of the fundamental concepts that underpin the technologies of the modern world.
Original language | English |
---|---|
Article number | 065008 |
Journal | Physics Education |
Volume | 59 |
Issue number | 6 |
DOIs | |
Publication status | Published - 1 Nov 2024 |