Determination of thermal conductivity, thermal diffusivity and specific heat capacity of porous silicon thin films using the 3ω method

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)

Abstract

Here the thermal transport properties of low thermal conductivity porous silicon thin films attached to high thermal conductivity silicon substrates are studied using the 3ω method implemented over the 100 Hz to 33 kHz frequency range. The thermal conductivity and thermal diffusivity of the films are extracted using temperature impedance monitoring of electrical contacts deposited on films, combined with an extended-frequency, multi-layer thermal model. From the extracted thermal conductivity and diffusivity of the films, the heat capacity could be determined. Validation of the approach is performed using the known properties of thick substrate glass and SU-8 layers spun on silicon substrates, the latter ranging in thickness from 1.35 to 12.5 µm. The technique was then applied to porous silicon films with porosities ranging from 45% to 77%. The extracted thermal properties for as-fabricated films show a reduction of thermal conductivity and diffusivity from 1.7 to 0.15 W/mK and 1.9 to 0.2 mm2/s, respectively as the porosity increases. After passivation by annealing in nitrogen and at 600 °C, the same films exhibited higher values of thermal conductivity and diffusivity ranging from 2.7 to 0.7 W/mK and 2.5 to 0.65 mm2/s. The ability to extract both thermal conductivity and thermal diffusivity for these films removes the need to make assumptions around specific heat capacity, commonly made during analysis of porous media. These results show for the first time a monotonic increase in specific heat capacity of porous silicon films as a function of porosity.

Original languageEnglish
Article number122346
JournalInternational Journal of Heat and Mass Transfer
Volume184
DOIs
Publication statusPublished - Mar 2022

Fingerprint

Dive into the research topics of 'Determination of thermal conductivity, thermal diffusivity and specific heat capacity of porous silicon thin films using the 3ω method'. Together they form a unique fingerprint.

Cite this