Abstract
Nitrification results in poor nitrogen (N) recovery and negative environmental impacts in most agricultural systems. Some plant species release secondary metabolites from their roots that inhibit nitrification, a phenomenon known as biological nitrification inhibition (BNI). Here, we attempt to characterize BNI in sorghum (Sorghum bicolor).In solution culture, the effect of N nutrition and plant age was studied on BNI activity from roots. A bioluminescence assay using recombinant Nitrosomonas europaea was employed to determine the inhibitory effect of root exudates. One major active constituent was isolated by activity-guided HPLC fractionations. The structure was analysed using NMR and mass spectrometry. Properties and the 70% inhibitory concentration (IC70) of this compound were determined by in vitro assay.Sorghum had significant BNI capacity, releasing 20 allylthiourea units (ATU) g(-1) root DW d(-1). Release of BNI compounds increased with growth stage and concentration of NH4+ supply. NH4+-grown plants released several-fold higher BNI compounds than NO3--grown plants. The active constituent was identified as methyl 3-(4-hydroxyphenyl) propionate.BNI compound release from roots is a physiologically active process, stimulated by the presence of NH4+. Methyl 3-(4-hydroxyphenyl) propionate is the first compound purified from the root exudates of any species; this is an important step towards better understanding BNI in sorghum.
Original language | English |
---|---|
Pages (from-to) | 442-451 |
Journal | New Phytologist |
Volume | 180 |
Issue number | 2 |
DOIs | |
Publication status | Published - 2008 |