Detailed experiments on weakly deformed cavitation bubbles

Outi Supponen, Danail Obreschkow, Philippe Kobel, Nicolas Dorsaz, Mohamed Farhat

Research output: Contribution to journalArticle

Abstract

We present high-precision experiments conducted with the aim to better characterise weak deformations of single cavitation bubbles. Using two needle hydrophones and a high-speed photodetector, we record the timings of shock waves and luminescence emitted at the collapse of laser-induced bubbles and are able to thereby obtain a precise measurement of their displacement during their lifetime. The bubbles are primarily deformed by variable gravity reached aboard parabolic flights, but we additionally take into account the effect of the nearest surfaces. A time shift of approximately 60 ns is found between the bubble lifetimes measured by the hydrophones and the photodetector for spherically collapsing bubbles, which we believe to be a result of different initial shock wave propagation speeds at the bubble's generation and at collapse. The normalised bubble displacement is found to follow a 2/3 scaling law for >0.001, where is the dimensionless anisotropy parameter quantifying the bubble deformation (analogous to Kelvin impulse). Additionally, we quantify the asymmetry of the shock wave generated at the collapse of bubbles with various levels of deformations by comparing the hydrophone signals at two different locations, and find significant variations between the shock peak pressures and energies at >0.001. These results consolidate the suggestion to consider approximate to 0.001 as a practical limit between spherical and deformed bubbles. This limit is probably sensitive to the bubble's initial sphericity, which is exceptionally high in our mirror-based aberration-free setup.

[GRAPHICS]

.

Original languageEnglish
Article number33
Number of pages13
JournalExperiments in Fluids
Volume60
Issue number2
DOIs
Publication statusPublished - Feb 2019

Cite this

Supponen, Outi ; Obreschkow, Danail ; Kobel, Philippe ; Dorsaz, Nicolas ; Farhat, Mohamed. / Detailed experiments on weakly deformed cavitation bubbles. In: Experiments in Fluids. 2019 ; Vol. 60, No. 2.
@article{b562a487b7bd46a6ad6a00b91e7bef10,
title = "Detailed experiments on weakly deformed cavitation bubbles",
abstract = "We present high-precision experiments conducted with the aim to better characterise weak deformations of single cavitation bubbles. Using two needle hydrophones and a high-speed photodetector, we record the timings of shock waves and luminescence emitted at the collapse of laser-induced bubbles and are able to thereby obtain a precise measurement of their displacement during their lifetime. The bubbles are primarily deformed by variable gravity reached aboard parabolic flights, but we additionally take into account the effect of the nearest surfaces. A time shift of approximately 60 ns is found between the bubble lifetimes measured by the hydrophones and the photodetector for spherically collapsing bubbles, which we believe to be a result of different initial shock wave propagation speeds at the bubble's generation and at collapse. The normalised bubble displacement is found to follow a 2/3 scaling law for >0.001, where is the dimensionless anisotropy parameter quantifying the bubble deformation (analogous to Kelvin impulse). Additionally, we quantify the asymmetry of the shock wave generated at the collapse of bubbles with various levels of deformations by comparing the hydrophone signals at two different locations, and find significant variations between the shock peak pressures and energies at >0.001. These results consolidate the suggestion to consider approximate to 0.001 as a practical limit between spherical and deformed bubbles. This limit is probably sensitive to the bubble's initial sphericity, which is exceptionally high in our mirror-based aberration-free setup.[GRAPHICS].",
keywords = "OPTICAL-BREAKDOWN, SHOCK-WAVES, LUMINESCENCE, PICOSECOND, WATER, GENERATION, DYNAMICS",
author = "Outi Supponen and Danail Obreschkow and Philippe Kobel and Nicolas Dorsaz and Mohamed Farhat",
year = "2019",
month = "2",
doi = "10.1007/s00348-019-2679-4",
language = "English",
volume = "60",
journal = "Experiments in Fluids",
issn = "0723-4864",
publisher = "Springer",
number = "2",

}

Detailed experiments on weakly deformed cavitation bubbles. / Supponen, Outi; Obreschkow, Danail; Kobel, Philippe; Dorsaz, Nicolas; Farhat, Mohamed.

In: Experiments in Fluids, Vol. 60, No. 2, 33, 02.2019.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Detailed experiments on weakly deformed cavitation bubbles

AU - Supponen, Outi

AU - Obreschkow, Danail

AU - Kobel, Philippe

AU - Dorsaz, Nicolas

AU - Farhat, Mohamed

PY - 2019/2

Y1 - 2019/2

N2 - We present high-precision experiments conducted with the aim to better characterise weak deformations of single cavitation bubbles. Using two needle hydrophones and a high-speed photodetector, we record the timings of shock waves and luminescence emitted at the collapse of laser-induced bubbles and are able to thereby obtain a precise measurement of their displacement during their lifetime. The bubbles are primarily deformed by variable gravity reached aboard parabolic flights, but we additionally take into account the effect of the nearest surfaces. A time shift of approximately 60 ns is found between the bubble lifetimes measured by the hydrophones and the photodetector for spherically collapsing bubbles, which we believe to be a result of different initial shock wave propagation speeds at the bubble's generation and at collapse. The normalised bubble displacement is found to follow a 2/3 scaling law for >0.001, where is the dimensionless anisotropy parameter quantifying the bubble deformation (analogous to Kelvin impulse). Additionally, we quantify the asymmetry of the shock wave generated at the collapse of bubbles with various levels of deformations by comparing the hydrophone signals at two different locations, and find significant variations between the shock peak pressures and energies at >0.001. These results consolidate the suggestion to consider approximate to 0.001 as a practical limit between spherical and deformed bubbles. This limit is probably sensitive to the bubble's initial sphericity, which is exceptionally high in our mirror-based aberration-free setup.[GRAPHICS].

AB - We present high-precision experiments conducted with the aim to better characterise weak deformations of single cavitation bubbles. Using two needle hydrophones and a high-speed photodetector, we record the timings of shock waves and luminescence emitted at the collapse of laser-induced bubbles and are able to thereby obtain a precise measurement of their displacement during their lifetime. The bubbles are primarily deformed by variable gravity reached aboard parabolic flights, but we additionally take into account the effect of the nearest surfaces. A time shift of approximately 60 ns is found between the bubble lifetimes measured by the hydrophones and the photodetector for spherically collapsing bubbles, which we believe to be a result of different initial shock wave propagation speeds at the bubble's generation and at collapse. The normalised bubble displacement is found to follow a 2/3 scaling law for >0.001, where is the dimensionless anisotropy parameter quantifying the bubble deformation (analogous to Kelvin impulse). Additionally, we quantify the asymmetry of the shock wave generated at the collapse of bubbles with various levels of deformations by comparing the hydrophone signals at two different locations, and find significant variations between the shock peak pressures and energies at >0.001. These results consolidate the suggestion to consider approximate to 0.001 as a practical limit between spherical and deformed bubbles. This limit is probably sensitive to the bubble's initial sphericity, which is exceptionally high in our mirror-based aberration-free setup.[GRAPHICS].

KW - OPTICAL-BREAKDOWN

KW - SHOCK-WAVES

KW - LUMINESCENCE

KW - PICOSECOND

KW - WATER

KW - GENERATION

KW - DYNAMICS

U2 - 10.1007/s00348-019-2679-4

DO - 10.1007/s00348-019-2679-4

M3 - Article

VL - 60

JO - Experiments in Fluids

JF - Experiments in Fluids

SN - 0723-4864

IS - 2

M1 - 33

ER -