TY - JOUR
T1 - Depth profiling of electronic transport parameters in n-on-p boron-ion-implanted vacancy-doped HgCdTe
AU - Umana-Membreno, Gilberto A.
AU - Kala, Hemendra
AU - Antoszewski, Jarek
AU - Ye, Z.H.
AU - Hu, W.D.
AU - Ding, R.J.
AU - Chen, X.S.
AU - Lu, W.
AU - He, L.
AU - Dell, John
AU - Faraone, Lorenzo
PY - 2013
Y1 - 2013
N2 - We report results of a detailed study of electronic transport in n-on-p junctions formed by 150-keV boron-ion implantation in vacancy-doped p-type Hg0.769Cd0.231Te without postimplantation thermal annealing. A mobility spectrum analysis methodology in conjunction with a wet chemical etching-based surface removal approach has been employed to depth profile the transport characteristics of the samples. In the as-implanted samples, three distinct electron species were detected which are shown to be associated with (a) low-mobility electrons in the top 220-nm surface-damaged layer (E 1: μ 80K = 2940 cm2/Vs), (b) the B-ion implantation region in the top 500-nm region (E 2: μ 80K = 7490 cm2/Vs), (c) high-mobility electrons in the n-to-p transition region at a depth of 600 nm to 700 nm (E 3: μ 80K = 25,640 cm2/Vs). Due to the maximum magnetic field employed (2 T), hole carriers from the underlying vacancy-doped p-type region were detected only after the removal of the top 220 nm of the profiled sample (μ 80K = 126 cm2/Vs), revealing fully p-type character 800 nm below the original sample surface. A comparison of the extracted E 2 electron concentration and calculated B-impurity profile suggests that the n-type region is due primarily to near-surface implantation-induced lattice damage. © 2013 TMS.
AB - We report results of a detailed study of electronic transport in n-on-p junctions formed by 150-keV boron-ion implantation in vacancy-doped p-type Hg0.769Cd0.231Te without postimplantation thermal annealing. A mobility spectrum analysis methodology in conjunction with a wet chemical etching-based surface removal approach has been employed to depth profile the transport characteristics of the samples. In the as-implanted samples, three distinct electron species were detected which are shown to be associated with (a) low-mobility electrons in the top 220-nm surface-damaged layer (E 1: μ 80K = 2940 cm2/Vs), (b) the B-ion implantation region in the top 500-nm region (E 2: μ 80K = 7490 cm2/Vs), (c) high-mobility electrons in the n-to-p transition region at a depth of 600 nm to 700 nm (E 3: μ 80K = 25,640 cm2/Vs). Due to the maximum magnetic field employed (2 T), hole carriers from the underlying vacancy-doped p-type region were detected only after the removal of the top 220 nm of the profiled sample (μ 80K = 126 cm2/Vs), revealing fully p-type character 800 nm below the original sample surface. A comparison of the extracted E 2 electron concentration and calculated B-impurity profile suggests that the n-type region is due primarily to near-surface implantation-induced lattice damage. © 2013 TMS.
U2 - 10.1007/s11664-013-2659-z
DO - 10.1007/s11664-013-2659-z
M3 - Article
SN - 0361-5235
VL - 42
SP - 3108
EP - 3113
JO - Journal of Electronic Materials
JF - Journal of Electronic Materials
IS - 11
ER -