TY - JOUR
T1 - Dependence of the wake on inclination of a stationary cylinder
AU - Zhou, Tongming
AU - Mohd Razali, Siti Fatin
AU - Zhou, Y.
AU - Chua, L.P.
AU - Cheng, Liang
PY - 2009
Y1 - 2009
N2 - Three-dimensional vorticity in the wake of an inclined stationary circular cylinder was measured simultaneously using a multi-hot wire vorticity probe over a streamwise range of x/d = 10–40. The study aimed to examine the dependence of the wake characteristics on cylinder inclination angle α (=0°–45°). The validity of the independence principle (IP) for vortex shedding was also examined. It was found that the spanwise mean velocity [`(W)] ,W which represents the three-dimensionality of the wake flow, increases monotonically with α. The root-mean-square (rms) values of the streamwise (u) and spanwise (w) velocities and the three vorticity components decrease significantly with the increase of α, whereas the transverse velocity (v) does not follow the same trend. The vortex shedding frequency decreases with the increase of α. The Strouhal number (St N), obtained by using the velocity component normal to the cylinder axis, remains approximately a constant within the experimental uncertainty (±8%) when α is smaller than about 40°. The autocorrelation coefficients ρ u and ρ v of the u and v velocity signals show apparent periodicity for all inclination angles. With increasing α, ρ u and ρ v decrease and approach zero quickly. In contrast, the autocorrelation coefficient ρ w of w increases with α in the near wake, implying an enhanced three-dimensionality of the wake.
AB - Three-dimensional vorticity in the wake of an inclined stationary circular cylinder was measured simultaneously using a multi-hot wire vorticity probe over a streamwise range of x/d = 10–40. The study aimed to examine the dependence of the wake characteristics on cylinder inclination angle α (=0°–45°). The validity of the independence principle (IP) for vortex shedding was also examined. It was found that the spanwise mean velocity [`(W)] ,W which represents the three-dimensionality of the wake flow, increases monotonically with α. The root-mean-square (rms) values of the streamwise (u) and spanwise (w) velocities and the three vorticity components decrease significantly with the increase of α, whereas the transverse velocity (v) does not follow the same trend. The vortex shedding frequency decreases with the increase of α. The Strouhal number (St N), obtained by using the velocity component normal to the cylinder axis, remains approximately a constant within the experimental uncertainty (±8%) when α is smaller than about 40°. The autocorrelation coefficients ρ u and ρ v of the u and v velocity signals show apparent periodicity for all inclination angles. With increasing α, ρ u and ρ v decrease and approach zero quickly. In contrast, the autocorrelation coefficient ρ w of w increases with α in the near wake, implying an enhanced three-dimensionality of the wake.
U2 - 10.1007/s00348-009-0625-6
DO - 10.1007/s00348-009-0625-6
M3 - Article
SN - 0723-4864
VL - 46
SP - 1125
EP - 1138
JO - Experiments in Fluids
JF - Experiments in Fluids
IS - 6
ER -