Demonstration of 100 Gbps coherent free-space optical communications at LEO tracking rates

Shane Walsh, Skevos F. E. Karpathakis, Ayden S. McCann, Benjamin P. Dix-Matthews, Alex M. Frost, David R. Gozzard, Charles T. Gravestock, Sascha W. Schediwy

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)

Abstract

Free-space optical communications are poised to alleviate the data-flow bottleneck experienced by spacecraft as traditional radio frequencies reach their practical limit. While enabling orders-of-magnitude gains in data rates, optical signals impose much stricter pointing requirements and are strongly affected by atmospheric turbulence. Coherent detection methods, which capitalize fully on the available degrees of freedom to maximize data capacity, have the added complication of needing to couple the received signal into single-mode fiber. In this paper we present results from a coherent 1550 nm link across turbulent atmosphere between a deployable optical terminal and a drone-mounted retroreflector. Through 10 Hz machine vision optical tracking with nested 200 Hz tip/tilt adaptive optics stabilisation, we corrected for pointing errors and atmospheric turbulence to maintain robust single mode fiber coupling, resulting in an uninterrupted 100 Gbps optical data link while tracking at angular rates of up to 1.5 deg/s, equivalent to that of spacecraft in low earth orbit. With the greater data capacity of coherent communications and compatibility with extant fiber-based technologies being demonstrated across static links, ground-to-low earth orbit links of Terabits per second can ultimately be achieved with capable ground stations.
Original languageEnglish
Article number18345
Number of pages12
JournalScientific Reports
Volume12
Issue number1
DOIs
Publication statusPublished - Dec 2022

Fingerprint

Dive into the research topics of 'Demonstration of 100 Gbps coherent free-space optical communications at LEO tracking rates'. Together they form a unique fingerprint.

Cite this