TY - JOUR
T1 - Degradation of transgenic DNA from genetically modified soya and maize in human intestinal simulations
AU - Martin-Orue, SM
AU - O'Donnell, A.G.
AU - Arino, J
AU - Netherwood, T
AU - Gilbert, HJ
AU - Mathers, JC
PY - 2002
Y1 - 2002
N2 - The inclusion of genetically modified (GM) foods in the human diet has caused considerable debate. There is concern that the transfer of plant-derived transgenes to the resident intestinal microflora could have safety implications. For these gene transfer events to occur, the nucleic acid would need to survive passage through the gastrointestinal tract. The aim of the present study was to evaluate the rate at which transgenes, contained within GM soya and maize, are degraded in gastric and small bowel simulations. The data showed that 80 % of the transgene in naked GM soya DNA was degraded in the gastric simulations, while no degradation of the transgenes contained within GM soya and maize were observed in these acidic conditions. In the small intestinal simulations, transgenes in naked soya DNA were degraded at a similar rate to the material in the soya protein. After incubation for 30 min, the transgenes remaining in soya protein and naked DNA were 52 (sem 13.1) % and 34 (sem 17.5) %, respectively, and at the completion of the experiment (3 h) these values were 5 % and 3 %, respectively. In contrast to the soya transgene, the maize nucleic acid was hydrolysed in the small intestinal simulations in a biphasic process in which approximately 85 % was rapidly degraded, while the rest of the DNA was cleaved at a rate similar to that in the soya material. Guar gum and tannic acid, molecules that are known to inhibit digestive enzymes, did not influence the rate of transgene degradation in soya protein. In contrast guar gum reduced the rate of transgene degradation in naked soya DNA in the initial stages, but the polysaccharide did not influence the amount of nucleic acid remaining at the end of the experiment. Tannic acid reduced the rate of DNA degradation throughout the small bowel simulations, with 21 (sem 5.4) % and 2 (sem 1.8) % of the naked soya DNA remaining in the presence and absence of the phenolic acid, respectively. These data indicate that some transgenes in GM foods may survive passage through the small intestine.
AB - The inclusion of genetically modified (GM) foods in the human diet has caused considerable debate. There is concern that the transfer of plant-derived transgenes to the resident intestinal microflora could have safety implications. For these gene transfer events to occur, the nucleic acid would need to survive passage through the gastrointestinal tract. The aim of the present study was to evaluate the rate at which transgenes, contained within GM soya and maize, are degraded in gastric and small bowel simulations. The data showed that 80 % of the transgene in naked GM soya DNA was degraded in the gastric simulations, while no degradation of the transgenes contained within GM soya and maize were observed in these acidic conditions. In the small intestinal simulations, transgenes in naked soya DNA were degraded at a similar rate to the material in the soya protein. After incubation for 30 min, the transgenes remaining in soya protein and naked DNA were 52 (sem 13.1) % and 34 (sem 17.5) %, respectively, and at the completion of the experiment (3 h) these values were 5 % and 3 %, respectively. In contrast to the soya transgene, the maize nucleic acid was hydrolysed in the small intestinal simulations in a biphasic process in which approximately 85 % was rapidly degraded, while the rest of the DNA was cleaved at a rate similar to that in the soya material. Guar gum and tannic acid, molecules that are known to inhibit digestive enzymes, did not influence the rate of transgene degradation in soya protein. In contrast guar gum reduced the rate of transgene degradation in naked soya DNA in the initial stages, but the polysaccharide did not influence the amount of nucleic acid remaining at the end of the experiment. Tannic acid reduced the rate of DNA degradation throughout the small bowel simulations, with 21 (sem 5.4) % and 2 (sem 1.8) % of the naked soya DNA remaining in the presence and absence of the phenolic acid, respectively. These data indicate that some transgenes in GM foods may survive passage through the small intestine.
U2 - 10.1079/BJNBJN2002573
DO - 10.1079/BJNBJN2002573
M3 - Article
C2 - 12067423
SN - 0007-1145
VL - 87
SP - 533
EP - 542
JO - British Journal of Nutrition
JF - British Journal of Nutrition
ER -