TY - JOUR
T1 - Deformation and toughness behavior of β -type titanium alloys comprising C15-type Laves phase
AU - Rabadia, C. D.
AU - Liu, Y. J.
AU - Jawed, S. F.
AU - Wang, L. Q.
AU - Sun, H.
AU - Zhang, L. C.
PY - 2020/9
Y1 - 2020/9
N2 - Laves phases are effective in tailoring the mechanical properties of alloys used for structural engineering applications. Therefore, it is an emerging research significance to investigate the deformation features of alloys comprising a Laves phase. In this work, the Ti–33Zr–xFe–yCr (x = 5, 7 wt% and y = 2, 4 wt%) alloys were designed in such a way that a Laves phase would form in the investigated Ti–33Zr–xFe–yCr alloys and later, cast by cold crucible levitation melting. All the as-cast alloys exhibit a face-centered cubic C15-type Laves phase along with a dominant β phase. The volume fraction of C15 Laves phase increases as the quantities of Fe and Cr increase in the Ti–33Zr–xFe–yCr alloys. Further, the volume fraction of C15 Laves phase influences the size of the deformation zone around the indentations and hardness of the investigated Ti–33Zr–xFe–yCr alloys. Vickers microindentation technique was used at the three different loads to examine the deformation features (around the indentations) of the as-cast alloys. In this work, Ti–33Zr–5Fe–2Cr shows large plastic strain (37.0%) in compression testing and high (true) yield strength (1,083 MPa) and hardness (3.50 GPa), whereas Ti–33Zr–7Fe–4Cr demonstrates the highest (true) yield strength (1,285 MPa), hardness (4.08 GPa), and the lowest size of the deformation zone around the indentations at three different indentation-loads. Moreover, the indentation-based fracture toughness of Ti–33Zr–7Fe–2Cr and Ti–33Zr–7Fe–4Cr were estimated based on the various relevant models proposed in the established literature.
AB - Laves phases are effective in tailoring the mechanical properties of alloys used for structural engineering applications. Therefore, it is an emerging research significance to investigate the deformation features of alloys comprising a Laves phase. In this work, the Ti–33Zr–xFe–yCr (x = 5, 7 wt% and y = 2, 4 wt%) alloys were designed in such a way that a Laves phase would form in the investigated Ti–33Zr–xFe–yCr alloys and later, cast by cold crucible levitation melting. All the as-cast alloys exhibit a face-centered cubic C15-type Laves phase along with a dominant β phase. The volume fraction of C15 Laves phase increases as the quantities of Fe and Cr increase in the Ti–33Zr–xFe–yCr alloys. Further, the volume fraction of C15 Laves phase influences the size of the deformation zone around the indentations and hardness of the investigated Ti–33Zr–xFe–yCr alloys. Vickers microindentation technique was used at the three different loads to examine the deformation features (around the indentations) of the as-cast alloys. In this work, Ti–33Zr–5Fe–2Cr shows large plastic strain (37.0%) in compression testing and high (true) yield strength (1,083 MPa) and hardness (3.50 GPa), whereas Ti–33Zr–7Fe–4Cr demonstrates the highest (true) yield strength (1,285 MPa), hardness (4.08 GPa), and the lowest size of the deformation zone around the indentations at three different indentation-loads. Moreover, the indentation-based fracture toughness of Ti–33Zr–7Fe–2Cr and Ti–33Zr–7Fe–4Cr were estimated based on the various relevant models proposed in the established literature.
KW - Deformation
KW - Fracture toughness
KW - Indentation
KW - Laves phase
KW - Mechanical properties
KW - Titanium alloys
UR - http://www.scopus.com/inward/record.url?scp=85082663710&partnerID=8YFLogxK
U2 - 10.1016/j.mtsust.2020.100034
DO - 10.1016/j.mtsust.2020.100034
M3 - Article
AN - SCOPUS:85082663710
VL - 9
JO - Materials Today Sustainability
JF - Materials Today Sustainability
M1 - 100034
ER -