TY - JOUR
T1 - Defining landscape resistance values in least-cost connectivity models for the invasive grey squirrel
T2 - A comparison of approaches using expert-opinion and habitat suitability modelling
AU - Stevenson-Holt, Claire D.
AU - Watts, Kevin
AU - Bellamy, Chloe C.
AU - Nevin, Owen T.
AU - Ramsey, Andrew D.
N1 - Funding Information:
The authors have the following competing interest: This work was funded by the Forestry Commission GB and National School of Forestry at the University of Cumbria. This does not alter the authors' adherence to all the PLOS ONE policies on sharing data and materials.
Publisher Copyright:
© 2014 PLOS ONE.
PY - 2014/11/7
Y1 - 2014/11/7
N2 - Least-cost models are widely used to study the functional connectivity of habitat within a varied landscape matrix. A critical step in the process is identifying resistance values for each land cover based upon the facilitating or impeding impact on species movement. Ideally resistance values would be parameterised with empirical data, but due to a shortage of such information, expert-opinion is often used. However, the use of expert-opinion is seen as subjective, human-centric and unreliable. This study derived resistance values from grey squirrel habitat suitability models (HSM) in order to compare the utility and validity of this approach with more traditional, expert-led methods. Models were built and tested with MaxEnt, using squirrel presence records and a categorical land cover map for Cumbria, UK. Predictions on the likelihood of squirrel occurrence within each land cover type were inverted, providing resistance values which were used to parameterise a leastcost model. The resulting habitat networks were measured and compared to those derived from a least-cost model built with previously collated information from experts. The expert-derived and HSM-inferred least-cost networks differ in precision. The HSM-informed networks were smaller and more fragmented because of the higher resistance values attributed to most habitats. These results are discussed in relation to the applicability of both approaches for conservation and management objectives, providing guidance to researchers and practitioners attempting to apply and interpret a leastcost approach to mapping ecological networks.
AB - Least-cost models are widely used to study the functional connectivity of habitat within a varied landscape matrix. A critical step in the process is identifying resistance values for each land cover based upon the facilitating or impeding impact on species movement. Ideally resistance values would be parameterised with empirical data, but due to a shortage of such information, expert-opinion is often used. However, the use of expert-opinion is seen as subjective, human-centric and unreliable. This study derived resistance values from grey squirrel habitat suitability models (HSM) in order to compare the utility and validity of this approach with more traditional, expert-led methods. Models were built and tested with MaxEnt, using squirrel presence records and a categorical land cover map for Cumbria, UK. Predictions on the likelihood of squirrel occurrence within each land cover type were inverted, providing resistance values which were used to parameterise a leastcost model. The resulting habitat networks were measured and compared to those derived from a least-cost model built with previously collated information from experts. The expert-derived and HSM-inferred least-cost networks differ in precision. The HSM-informed networks were smaller and more fragmented because of the higher resistance values attributed to most habitats. These results are discussed in relation to the applicability of both approaches for conservation and management objectives, providing guidance to researchers and practitioners attempting to apply and interpret a leastcost approach to mapping ecological networks.
UR - http://www.scopus.com/inward/record.url?scp=84915747233&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0112119
DO - 10.1371/journal.pone.0112119
M3 - Article
C2 - 25380289
AN - SCOPUS:84915747233
SN - 1932-6203
VL - 9
JO - PLoS One
JF - PLoS One
IS - 11
M1 - e112119
ER -